960 resultados para electrochemical oxidation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of more selective and sensitive analytical methods is of great importance in different areas of knowledge, covering, for example, food, biotechnological, environmental and pharmaceutical sectors. The study aimed to employ the technique electroanalytical differential pulse voltammetry (DPV) as an innovative and promising alternative for identification and quantification of organic compounds. The organic compounds were investigated in this study oxalic acid (OA) and folic acid (FA). The electrochemical oxidation of oxalic acid has been extensively studied as a model reaction in the boundary between the organic and inorganic electrochemistry. Since the AF, an essential vitamin for cell multiplication in all tissues, which is essential for DNA synthesis. The AF has been investigated using analytical techniques, liquid chromatography and molecular absorption spectrophotometry. The results obtained during the experimental procedure indicated that the process of electrochemical oxidation of oxalic acid is strongly dependent on the nature of the anode material and the oxidation mechanism, which affects their detection. Efficient removal was observed in Ti/PbO2 anodes, graphite, BDD and Pt 90, 85, 80 and 78% respectively. It was also shown that the DPV employing glassy carbon electrode offers a fast, simple, reliable and economical way to determine the AO during the process of electrochemical oxidation. Furthermore, electroanalytical methods are more expensive than commonly used chromatographic analysis and other instrumental methods involving toxic reagents and higher cost. Compared with the classical method of titration and DPV could be a good fit, confidence intervals and detection limits confirming the applicability of electroanalytical technique for monitoring the degradation of oxalic acid. For the study of AF was investigated the electrocatalytic activity of the carbon paste electrode for identification and quantification in pharmaceutical formulations by applying the DPV. The results obtained during the experimental procedure showed an irreversible oxidation peak at 9.1 V characteristic of FA. The carbon paste sensor showed low detection limit of 5.683×10−8 mol L-1 reducing matrix effects. The spectrophotometric analysis showed lower concentrations of HF compared with those obtained by HPLC and DPV. The levels of AF were obtained according to the methodology proposed by the Brazilian Pharmacopoeia. The electroanalytical method (DPV) proposed is cheaper than GC analysis commonly used by the pharmaceutical industry. The results demonstrated the potential of these electroanalytical techniques for future applications in environmental, chemical and biological sensors

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical oxidation of 3,4-dihydroxycinnamic acid, caffeic acid, leads to a stable electroactive poly(caffeic acid) thin film containing quinone moiety on a preactivated glassy polymeric carbon electrode. The properties of the deposited films as well as the stability study under different experimental conditions were investigated. Taking advantage of the electrochemical behavior, an analytical method based on differential pulse voltammetry for determination of caffeic acid in red wine was proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical oxidation of caffeic, chlorogenic, sinapic, ferulic and p-coumaric acids was investigated by cyclic voltammetry on acetate buffer pH 5.6 on glassy carbon electrode and modified glassy carbon electrode. According to their voltammetric behavior, the antioxidant activity of these phenolic acids was evaluated and the results pointed to the following sequence: caffeic acid (E-a = +0.31 V) > chlorogenic acid (+ 0.38 V) > sinapic acid (+ 0.45 V) > ferulic acid (+ 0.53 V) >p-coumaric acid (+ 0.73 V). The results were confirmed by DPPH test, which evidenced the strongest antiradical activity for compounds possessing the cathecol moiety (caffeic and chlorogenic acids). Linear calibration graphs were obtained for their determination at concentrations from 1 x 10(-4) to 1 x 10(-3) mol L-1. The method was applied to orange juice. Selectivity was illustrated by the analysis of caffeic and chlorogenic acids electrodeposited on a glassy carbon electrode previously modified by electrochemical activation in the presence of ascorbic acid. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[(NH3)(5)Ru-III(2-NCpy)], obtained from electrochemical oxidation of the Ru(II) complex, undergoes hydrolysis to the amido-bonded [Ru-III(NHC(O)-2-py)]. The electrochemical reduction of this latter complex to Ru(II) is followed by an aquation reaction to form [R(II)(NH3)(5)(OH2)] and free picolinamide and a chelation reaction to form cis-[R(II)-(NH3)(4)(2-pica)] with the displacement of one cis ammonia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A procedure for the standardization of ensembles of gold nanodisk electrodes (NEE) of 30 nm diameter is presented, which is based on the analytical comparison between experimental cyclic voltammograms (CV) obtained at the NEEs in diluted solutions of redox probes and CV patterns obtained by digital simulation. Possible origins of defects sometimes found in NEEs are discussed. Selected NEEs are then employed for the study of the electrochemical oxidation of iodide in acidic solutions. CV patterns display typical quasi-reversible behavior which involves associated chemical reactions between adsorbed and solution species. The main CV characteristics at the NEE compare with those observed at millimeter sized gold disk electrodes (Au-macro), apart a slight shift in E1/2 values and slightly higher peak to peak separation at the NEE. The detection limit (DC) at NEEs is 0.3 mu M, which is more than one order of magnitude lower than DL at the Au-macro (4 RM). The mechanism of the electrochemical oxidation of iodide at NEEs is discussed. Finally, NEEs are applied to the direct determination of iodide at micromolar concentration levels in real samples, namely in some ophthalmic drugs and iodized table salt. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the axial organic ligand R on the electrochemical oxidation of the compounds [RCoIII(salen)DMF)], where salen is bis(salicylaldehyde)ethylenediimine, and R CH3, C2H5, n-C3H7, n-C4H9, s-C4H9, i-C4H9, CH2Cl, CF3CH2, c-C6H11CH2, c-C6H11, C6H5, C6H5CH2, p-CH3C6H4CH2, and p-NO2C6H4CH2, was studied by means of cyclic voltametry in dimethylformamide (DMF), 0.2 M in tetraethylammonium perchlorate (TEAP), at 25 and -20°C, with a platinum disc working electrode. The above-mentioned compounds can be classified according to their electrochemical behavior. (a) The complexes with R CH3, C2H5, n-C3H7, n-C4H9, c-C6H11CH2, and C6H5 undergo a reversible one-electron oxidation in the 10-50 V s-1 potential scan range. At slower scan rates, the oxidized product decomposes chemically. At -20°C, this chemical step is slow, and a reversible one-electron electrochemical oxidation is observed. (b) The compounds with R CH2Cl, C6H5CH2, p-CH3C6H4CH2 and p-NO2C6H4CH2 undergo a quasi-reversible one-electron oxidation at room temperaure. At -20°C, the electrochemical process becomes more complex. A following chemical reactions is coupled to the quasi-reversible one-electron transfer. Two reduction peaks are observed. (c) The compounds with R i-C4H9, s-C4H9, and c-C6H11 undergo a reversible one-electron oxidation at -20°C. At room temperature, the irreversible chemical reaction following the electron transfer step is too fast to allow the isolation of the electrochemical step. (d) At -20°C, the derivatives with R C2H5, c-C6H11 CH2 and c-C6H11 are adsorbed at the electrode surface. Evidence indicates that the reagent in these reactions is the pentacoordinated species [RCoIII(salen)]. A linear free-energy relationship between E1/2 (for reversible processes) and the Taft polar parameters o* was obtained with a slope of ρ* = 0.25 ± 0.03. As expected, the benzyl derivatives which present mesomeric effects do not fit this polar correlation. The rated of the electrochemical oxidation is also affected by the nature of the ligand R. For the ligands which are strong electron-withdrawing groups and for the benzyl derivatives, the rate of the electrochemical oxidation of the metal ion decreases at room temperature. At lower temperatures, it is suggested that the oxidation to the CoIV-R species is followed by a chemical reaction in which this complex is partly transformed into a CoIII(R*) species, which is reduced at a much more cathodic potential than the Co(IV) species. © 1979.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the equatorial ligand on the electrochemical oxidation of the compounds [H3CCo(chel)B], where chel is bis (dimethylglyoximato), (DH)2; bis(salicylaldehyde)ethylenediimine, salen; bis(salicylaldehyde) o-phenylenediimine, salophen; bis(salicylaldehyde)cyclohexylenediimine, salcn; bis(acetylacetone) ethylenediimine, bae; and where B is pyridine when chel is (DH2), and dimethylformamide (DMF) when chel represents a Schiff base (salen, salcn, salophen and bae), was studied by means of cyclic voltammetry in DMF, 0.2 M in tetraethylammonium perchlorate, between 25 and -25°C, with a platinum disk working electrode. Absorption spectra in the visible and near ultraviolet regions for these compounds in DMF at 25°C were obtained. The complexes exhibit a reversible one-electron oxidation, at -20°C with scan rates >0.5 V s-; chemical reactions following electron transfer are not detected under these conditions. At slower potential or higher temperatures, the oxidized product decomposes chemically in a solvent-assisted (or nucleophile-assisted) reaction, yielding products which are electroactive in the applied potential range. The behavior of the [H3CCo (DH2)py] derivative is better described as a quasi-reversible charge transfer followed by an irreversible chemical reaction. Experimental evidence suggests that in the case of the [H3CCo(bae)] derivative at -20°C, the reactive -species is pentacoordinated and weakly adsorbed at the electrode surface. The value of E 1 2 and the energies of the first two absorption bands in the visible spectra reveal the ability of the studied complexes to donate and to delocalize electronic charge. © 1982.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical oxidation of some p-substituted benzylic derivatives of Co(III) dimethylglyoximato and Co(III)bis(salicylaldehydc)o-phenylenediimine in dimethylformamide. 0.2 M in tetraethyammonium perchlorate, on a platinum electrode, at several temperatures, is described as an ECE type, the first electrochemical step being a quasi-reversible one-electron charge transfer at room temperature. At temperatures around -20°C, or lower, the influence of the irreversible chemical decomposition of the oxidized species, via a solvent or other nucleophilic-assisted reaction, is negligible. It is suggested that at low temperatures the oxidation to the formally CoIV-R species is followed by an isomerization reaction in which this complex is partially transformed in a CoIII-(R) species or a s π-complex which undergoes an electroreduction at less positive potentials than those corresponding to the reduction of the CoIV-R species. © 1982.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

the electrochemical oxidation of ferrocene on Pt in dimethylformamide, ethanol, propylene carbonate and their aqueous solutions was studied at 25°C. The concentration of the supporting electrolyte, NaClO4, was varied from 0.1 to 0.5 M. The results show that the electrode process may be described as a quasi-reversible one-electron charge transfer, followed by slow decomposition of the oxidized species. © 1987.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1×10-4molL-1 and generation of 7.6×10-7molL-1 to 0.31×10-4molL-1 of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism of electrochemical oxidation of surface reformed CuA1Ag alloys having different composition of heat treatment, in 0.5 M NaOH was studied by means of cyclic polarization, constant potential electrolysis, ICP, AA, SEM and EDX. The surface reformation consisted of a repetitive triangular potential sweep (RTPS) between H 2 and O 2 evolution at 100 mV s -1 in the working solution itself, performed in order to increase the electrode roughness and obtain a quasi-stationary I/E profile in which the potentiodynamic behaviour of copper and silver was clearly revealed. The alloys suffer aluminum dealloying after such an RTPS. The quasi-stationary cyclic polarization curve exhibits a multiplicity of current peaks which have been related to the electrochemical reactions involving the pure alloying elements. Complex potential perturbation programmes in regions having different anodic and cathodic limits allowed the study of the mechanism of the electrochemical oxidation of the surface reformed alloys and the compare with that corresponding to the pure metals. The basic differences between the electro-oxidation processes of the surface reformed CuA1Ag alloys with respect to those established for the high purity alloying metals are the splitting of the peaks corresponding to the formation of the Cu(I) and Ag(I) species. © 1991.