980 resultados para UNSTABLE MANIFOLDS
Resumo:
The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.
Resumo:
In this paper we extend the well-known Leinfelder–Simader theorem on the essential selfadjointness of singular Schrödinger operators to arbitrary complete Riemannian manifolds. This improves some earlier results of Shubin, Milatovic and others.
Resumo:
The author contends that many of the conventions of Italian film studies derive from the conflicts and the critical vocabulary that shaped the Italian reception of neorealism in the first decade after the Second World War. Those conflicts, and that critical vocabulary, which lie at the foundation of what has been called the ‘institution of neorealism,’ established an irreconcilable binary: Cronaca and Narrativa. For the neorealists and their critics, Cronaca stood for the effort to record data faithfully, while Narrativa represented the effort to employ the shaping force of human invention in the representation of information. This essay’s first section analyzes the earliest reviews of Rossellini’s Roma città aperta alongside the contemporaneous literary debates over Cronaca and Narrativa. The second section reconsiders the reception of Pratolini’s Metello and Visconti’s Senso, which similarly centered upon the conflict between Cronaca and Narrativa. The third section proposes that the concepts which have often been employed to unify neorealism are destabilized by the Cronaca/Narrativa binary. In search of a solution to neorealism’s conceptual instability, this essay proposes more critical and purposeful appropriations of the movement’s problematic genealogy.
Resumo:
We study the inuence of the intrinsic curvature on the large time behaviour of the heat equation in a tubular neighbourhood of an unbounded geodesic in a two-dimensional Riemannian manifold. Since we consider killing boundary conditions, there is always an exponential-type decay for the heat semigroup. We show that this exponential-type decay is slower for positively curved manifolds comparing to the at case. As the main result, we establish a sharp extra polynomial-type decay for the heat semigroup on negatively curved manifolds comparing to the at case. The proof employs the existence of Hardy-type inequalities for the Dirichlet Laplacian in the tubular neighbourhoods on negatively curved manifolds and the method of self-similar variables and weighted Sobolev spaces for the heat equation.
Resumo:
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Resumo:
Levels of autoantibodies to oxidized low-density lipoprotein (oxLDL) have been correlated to atherosclerosis; however, contradictory results have been shown. To better understand the role of autoantibodies to oxLDL in atherogenesis, and their potential to predict risk of developing coronary artery disease we investigated the antibody response of unstable angina (UA) patients and healthy controls against chromatographic separated fractions of oxLDL. Five major peaks were detected after chromatographic separation of oxLDL and 10 fractions were collected. Surprisingly, when the response to high molecular weight fractions was analysed, we observed a significant increase in the levels of autoantibodies in controls compared to UA. In contrast, when the autoantibody response to intermediate and low molecular weight fractions was analysed, we observed that the UA group showed consistently higher levels compared with controls. Our data demonstrates that within oxLDL there are major fractions that can be recognized by autoantibodies from either UA patients or healthy individuals, and that the use of total oxLDL as an antigen pool may mask the presence of some antigenic molecules and their corresponding antibodies. Further studies are needed, but the analysis of antibody profiles may indeed open up a novel approach for evaluation and prevention against atherosclerosis.
Resumo:
Process scheduling techniques consider the current load situation to allocate computing resources. Those techniques make approximations such as the average of communication, processing, and memory access to improve the process scheduling, although processes may present different behaviors during their whole execution. They may start with high communication requirements and later just processing. By discovering how processes behave over time, we believe it is possible to improve the resource allocation. This has motivated this paper which adopts chaos theory concepts and nonlinear prediction techniques in order to model and predict process behavior. Results confirm the radial basis function technique which presents good predictions and also low processing demands show what is essential in a real distributed environment.
Resumo:
We provide an affirmative answer to the C(r)-Closing Lemma, r >= 2, for a large class of flows defined on every closed surface.
Resumo:
We study the geometry of 3-manifolds generically embedded in R(n) by means of the analysis of the singularities of the distance-squared and height functions on them. We describe the local structure of the discriminant (associated to the distribution of asymptotic directions), the ridges and the flat ridges.
Reaction mechanisms for weakly-bound, stable nuclei and unstable, halo nuclei on medium-mass targets
Resumo:
An experimental overview of reactions induced by the stable, but weakly-bound nuclei (6)Li, (7)Li and (9)Be, and by the exotic, halo nuclei (6)He, (8)B, (11)Be and (17)F on medium-mass targets, such as (58)Ni, (59)Co or (64)Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion processes, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.
Resumo:
Themean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions ( similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established.
Resumo:
Given a compact manifold X, a continuous function g : X -> IR, and a map T : X -> X, we study properties of the T-invariant Borel probability measures that maximize the integral of g. We show that if X is a n-dimensional connected Riemaniann manifold, with n >= 2, then the set of homeomorphisms for which there is a maximizing measure supported on a periodic orbit is meager. We also show that, if X is the circle, then the ""topological size"" of the set of endomorphisms for which there are g maximizing measures with support on a periodic orbit depends on properties of the function g. In particular, if g is C(1), it has interior points.
Resumo:
We prove that given a compact n-dimensional connected Riemannian manifold X and a continuous function g : X -> R, there exists a dense subset of the space of homeomorphisms of X such that for all T in this subset, the integral integral(X) g d mu, considered as a function on the space of all T-invariant Borel probability measures mu, attains its maximum on a measure supported on a periodic orbit.
Resumo:
A classical theorem of H. Hopf asserts that a closed connected smooth manifold admits a nowhere vanishing vector field if and only if its Euler characteristic is zero. R. Brown generalized Hopf`s result to topological manifolds, replacing vector fields with path fields. In this note, we give an equivariant analog of Brown`s theorem for locally smooth G-manifolds where G is a finite group.
Resumo:
Following the lines of Bott in (Commun Pure Appl Math 9:171-206, 1956), we study the Morse index of the iterates of a closed geodesic in stationary Lorentzian manifolds, or, more generally, of a closed Lorentzian geodesic that admits a timelike periodic Jacobi field. Given one such closed geodesic gamma, we prove the existence of a locally constant integer valued map Lambda(gamma) on the unit circle with the property that the Morse index of the iterated gamma(N) is equal, up to a correction term epsilon(gamma) is an element of {0,1}, to the sum of the values of Lambda(gamma) at the N-th roots of unity. The discontinuities of Lambda(gamma) occur at a finite number of points of the unit circle, that are special eigenvalues of the linearized Poincare map of gamma. We discuss some applications of the theory.