957 resultados para Time-series analysis
Resumo:
In recent papers, Wied and his coauthors have introduced change-point procedures to detect and estimate structural breaks in the correlation between time series. To prove the asymptotic distribution of the test statistic and stopping time as well as the change-point estimation rate, they use an extended functional Delta method and assume nearly constant expectations and variances of the time series. In this thesis, we allow asymptotically infinitely many structural breaks in the means and variances of the time series. For this setting, we present test statistics and stopping times which are used to determine whether or not the correlation between two time series is and stays constant, respectively. Additionally, we consider estimates for change-points in the correlations. The employed nonparametric statistics depend on the means and variances. These (nuisance) parameters are replaced by estimates in the course of this thesis. We avoid assuming a fixed form of these estimates but rather we use "blackbox" estimates, i.e. we derive results under assumptions that these estimates fulfill. These results are supplement with examples. This thesis is organized in seven sections. In Section 1, we motivate the issue and present the mathematical model. In Section 2, we consider a posteriori and sequential testing procedures, and investigate convergence rates for change-point estimation, always assuming that the means and the variances of the time series are known. In the following sections, the assumptions of known means and variances are relaxed. In Section 3, we present the assumptions for the mean and variance estimates that we will use for the mean in Section 4, for the variance in Section 5, and for both parameters in Section 6. Finally, in Section 7, a simulation study illustrates the finite sample behaviors of some testing procedures and estimates.
Resumo:
Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Microarray techniques have become an important tool to the investigation of genetic relationships and the assignment of different phenotypes. Since microarrays are still very expensive, most of the experiments are performed with small samples. This paper introduces a method to quantify dependency between data series composed of few sample points. The method is used to construct gene co-expression subnetworks of highly significant edges. Results: The results shown here are for an adapted subset of a Saccharomyces cerevisiae gene expression data set with low temporal resolution and poor statistics. The method reveals common transcription factors with a high confidence level and allows the construction of subnetworks with high biological relevance that reveals characteristic features of the processes driving the organism adaptations to specific environmental conditions. Conclusion: Our method allows a reliable and sophisticated analysis of microarray data even under severe constraints. The utilization of systems biology improves the biologists ability to elucidate the mechanisms underlying celular processes and to formulate new hypotheses.
Resumo:
The Random Parameter model was proposed to explain the structure of the covariance matrix in problems where most, but not all, of the eigenvalues of the covariance matrix can be explained by Random Matrix Theory. In this article, we explore the scaling properties of the model, as observed in the multifractal structure of the simulated time series. We use the Wavelet Transform Modulus Maxima technique to obtain the multifractal spectrum dependence with the parameters of the model. The model shows a scaling structure compatible with the stylized facts for a reasonable choice of the parameter values. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
By allowing the estimation of forest structural and biophysical characteristics at different temporal and spatial scales, remote sensing may contribute to our understanding and monitoring of planted forests. Here, we studied 9-year time-series of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on a network of 16 stands in fast-growing Eucalyptus plantations in Sao Paulo State, Brazil. We aimed to examine the relationships between NDVI time-series spanning entire rotations and stand structural characteristics (volume, dominant height, mean annual increment) in these simple forest ecosystems. Our second objective was to examine spatial and temporal variations of light use efficiency for wood production, by comparing time-series of Absorbed Photosynthetically Active Radiation (APAR) with inventory data. Relationships were calibrated between the NDVI and the fractions of intercepted diffuse and direct radiation, using hemispherical photographs taken on the studied stands at two seasons. APAR was calculated from the NDVI time-series using these relationships. Stem volume and dominant height were strongly correlated with summed NDVI values between planting date and inventory date. Stand productivity was correlated with mean NDVI values. APAR during the first 2 years of growth was variable between stands and was well correlated with stem wood production (r(2) = 0.78). In contrast, APAR during the following years was less variable and not significantly correlated with stem biomass increments. Production of wood per unit of absorbed light varied with stand age and with site index. In our study, a better site index was accompanied both by increased APAR during the first 2 years of growth and by higher light use efficiency for stem wood production during the whole rotation. Implications for simple process-based modelling are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
The continued increase in availability of economic data in recent years and, more importantly, the possibility to construct larger frequency time series, have fostered the use (and development) of statistical and econometric techniques to treat them more accurately. This paper presents an exposition of structural time series models by which a time series can be decomposed as the sum of a trend, seasonal and irregular components. In addition to a detailled analysis of univariate speci fications we also address the SUTSE multivariate case and the issue of cointegration. Finally, the recursive estimation and smoothing by means of the Kalman filter algorithm is described taking into account its different stages, from initialisation to parameter s estimation.
Resumo:
This study analyses financial data using the result characterization of a self-organized neural network model. The goal was prototyping a tool that may help an economist or a market analyst to analyse stock market series. To reach this goal, the tool shows economic dependencies and statistics measures over stock market series. The neural network SOM (self-organizing maps) model was used to ex-tract behavioural patterns of the data analysed. Based on this model, it was de-veloped an application to analyse financial data. This application uses a portfo-lio of correlated markets or inverse-correlated markets as input. After the anal-ysis with SOM, the result is represented by micro clusters that are organized by its behaviour tendency. During the study appeared the need of a better analysis for SOM algo-rithm results. This problem was solved with a cluster solution technique, which groups the micro clusters from SOM U-Matrix analyses. The study showed that the correlation and inverse-correlation markets projects multiple clusters of data. These clusters represent multiple trend states that may be useful for technical professionals.
Resumo:
In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).
Resumo:
This work proposes novel network analysis techniques for multivariate time series.We define the network of a multivariate time series as a graph where verticesdenote the components of the process and edges denote non zero long run partialcorrelations. We then introduce a two step LASSO procedure, called NETS, toestimate high dimensional sparse Long Run Partial Correlation networks. This approachis based on a VAR approximation of the process and allows to decomposethe long run linkages into the contribution of the dynamic and contemporaneousdependence relations of the system. The large sample properties of the estimatorare analysed and we establish conditions for consistent selection and estimation ofthe non zero long run partial correlations. The methodology is illustrated with anapplication to a panel of U.S. bluechips.
Resumo:
This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.
Resumo:
Chaotic dynamical systems exhibit trajectories in their phase space that converges to a strange attractor. The strangeness of the chaotic attractor is associated with its dimension in which instance it is described by a noninteger dimension. This contribution presents an overview of the main definitions of dimension discussing their evaluation from time series employing the correlation and the generalized dimension. The investigation is applied to the nonlinear pendulum where signals are generated by numerical integration of the mathematical model, selecting a single variable of the system as a time series. In order to simulate experimental data sets, a random noise is introduced in the time series. State space reconstruction and the determination of attractor dimensions are carried out regarding periodic and chaotic signals. Results obtained from time series analyses are compared with a reference value obtained from the analysis of mathematical model, estimating noise sensitivity. This procedure allows one to identify the best techniques to be applied in the analysis of experimental data.
Resumo:
This Paper Studies Tests of Joint Hypotheses in Time Series Regression with a Unit Root in Which Weakly Dependent and Heterogeneously Distributed Innovations Are Allowed. We Consider Two Types of Regression: One with a Constant and Lagged Dependent Variable, and the Other with a Trend Added. the Statistics Studied Are the Regression \"F-Test\" Originally Analysed by Dickey and Fuller (1981) in a Less General Framework. the Limiting Distributions Are Found Using Functinal Central Limit Theory. New Test Statistics Are Proposed Which Require Only Already Tabulated Critical Values But Which Are Valid in a Quite General Framework (Including Finite Order Arma Models Generated by Gaussian Errors). This Study Extends the Results on Single Coefficients Derived in Phillips (1986A) and Phillips and Perron (1986).