Multifractality in the random parameter model for multivariate time series


Autoria(s): RODRIGUES NETO, Camilo; MARTINS, Andre C. R.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

18/10/2012

18/10/2012

2009

Resumo

The Random Parameter model was proposed to explain the structure of the covariance matrix in problems where most, but not all, of the eigenvalues of the covariance matrix can be explained by Random Matrix Theory. In this article, we explore the scaling properties of the model, as observed in the multifractal structure of the simulated time series. We use the Wavelet Transform Modulus Maxima technique to obtain the multifractal spectrum dependence with the parameters of the model. The model shows a scaling structure compatible with the stylized facts for a reasonable choice of the parameter values. (C) 2009 Elsevier B.V. All rights reserved.

Identificador

PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v.388, n.11, p.2198-2206, 2009

0378-4371

http://producao.usp.br/handle/BDPI/17123

10.1016/j.physa.2009.02.005

http://dx.doi.org/10.1016/j.physa.2009.02.005

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Physica A-statistical Mechanics and Its Applications

Direitos

closedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Multifractal analysis #Wavelet transform #Stochastic processes #FINANCIAL CORRELATION-MATRICES #STOCK-MARKET #CROSS-CORRELATIONS #FRACTAL SIGNALS #NOISE #FORMALISM #WAVELETS #TURBULENCE #Physics, Multidisciplinary
Tipo

article

original article

publishedVersion