Multifractality in the random parameter model for multivariate time series
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
18/10/2012
18/10/2012
2009
|
Resumo |
The Random Parameter model was proposed to explain the structure of the covariance matrix in problems where most, but not all, of the eigenvalues of the covariance matrix can be explained by Random Matrix Theory. In this article, we explore the scaling properties of the model, as observed in the multifractal structure of the simulated time series. We use the Wavelet Transform Modulus Maxima technique to obtain the multifractal spectrum dependence with the parameters of the model. The model shows a scaling structure compatible with the stylized facts for a reasonable choice of the parameter values. (C) 2009 Elsevier B.V. All rights reserved. |
Identificador |
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v.388, n.11, p.2198-2206, 2009 0378-4371 http://producao.usp.br/handle/BDPI/17123 10.1016/j.physa.2009.02.005 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Physica A-statistical Mechanics and Its Applications |
Direitos |
closedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Multifractal analysis #Wavelet transform #Stochastic processes #FINANCIAL CORRELATION-MATRICES #STOCK-MARKET #CROSS-CORRELATIONS #FRACTAL SIGNALS #NOISE #FORMALISM #WAVELETS #TURBULENCE #Physics, Multidisciplinary |
Tipo |
article original article publishedVersion |