570 resultados para Thymus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invariant Valpha14 (Valpha14i) NKT cells are a murine CD1d-dependent regulatory T cell subset characterized by a Valpha14-Jalpha18 rearrangement and expression of mostly Vbeta8.2 and Vbeta7. Whereas the TCR Vbeta domain influences the binding avidity of the Valpha14i TCR for CD1d-alpha-galactosylceramide complexes, with Vbeta8.2 conferring higher avidity binding than Vbeta7, a possible impact of the TCR Vbeta domain on Valpha14i NKT cell selection by endogenous ligands has not been studied. In this study, we show that thymic selection of Vbeta7(+), but not Vbeta8.2(+), Valpha14i NKT cells is favored in situations where endogenous ligand concentration or TCRalpha-chain avidity are suboptimal. Furthermore, thymic Vbeta7(+) Valpha14i NKT cells were preferentially selected in vitro in response to CD1d-dependent presentation of endogenous ligands or exogenously added self ligand isoglobotrihexosylceramide. Collectively, our data demonstrate that the TCR Vbeta domain influences the selection of Valpha14i NKT cells by endogenous ligands, presumably because Vbeta7 confers higher avidity binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thymus is the site of T cell development. Several stromal and hematopoietic cell types are necessary for the proper function of thymic selection and eventually peripheral immunity. Thymic epithelial cells (TECs) are essential for T cell lineage commitment, expansion, and maturation in the thymus. We were interested in developing an in vivo model in which exogenous gene expression could be transiently induced in embryonic TEC (Tet-On system). To this end, we have generated a bacterial artificial chromosome (BAC) transgenic mouse line in which the reverse tetracycline-dependent transactivator (rtTA) is expressed under the control of the Foxn1 promoter, a transcriptional factor indispensable for TEC development. To analyze the expression pattern and efficiency of this novel mouse model, we crossed the Foxn1-rtTA founder with a Tet-Responsive Element (TRE)-LacZ GFP mouse reporter to obtain a double transgenic mouse. In the presence of doxycycline, rtTA can interact with TRE and induce the expression of GFP and LacZ. In this double transgenic mouse, we observed that GFP expression was high, inducible and limited to TEC in fetal thymus. In contrast, in adult thymus, when TEC development and maturation is completed, GFP was barely detectable. Therefore, Foxn1-rtTA represents a new and efficient transgenic mouse model to induce genes of interest specifically in fetal thymic epithelium. genesis 51:717-724. © 2013 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immune responses to malaria infections are characterized by strong T and B cell activation, which, in addition of potentially causing immunopathology, are of poor efficacy against the infection. It is possible that the thymus is involved in the origin of immunopathological reactions and a target during malaria infections. This work was developed in an attempt to further clarify these points. We studied the sequential changes in the thymus of CBA mice infected with Plasmodium berghei ANKA, a model in which 60-90% of the infected animals develop cerebral malaria. During the acute phase of infection, different degrees of thymocyte apoptosis were recorded: (1) starry-sky pattern of diffuse apoptosis with maintenance of cortical-medullary structure; (2) intense apoptosis with cortical atrophy, with absence of large cells; (3) severe cortical thymocyte depletion, resulting in cortical-medullary inversion. In the latter, only residual clusters of small thymocytes were observed within the framework of epithelial cells. The intensity of thymus alterations could not be associated with the degree of parasitemia, the expression of clinical signs of cerebral malaria or intensity of brain lesions. The implications of these events for malaria immunity and pathology are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose/Objective: Histone deacetylases (HDACs) deacetylate histones and transcriptional regulators thereby affecting numerous biological functions. Seven mammalian sirtuins (SIRT1-7) constitute the NAD-dependent class III subfamily of HDACs. Sirtuins are the center of great interest due to their regulatory role in the control of metabolism, ageing and age-related diseases. Up to now, little is known about the influence of sirtuins on immune responses, and nothing about the role of SIRT2. The aim of the study was to analyze the influence of SIRT2 knockout on immune cell development and innate immune responses in vitro and in vivo. Materials and methods: SIRT2 germline knockout were produced on a C57BL/6J background. The cellularity of thymus and spleen was assessed by flow cytometry (n = 3). Bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) and splenocytes were stimulated with LPS, Pam3CSK4 lipopeptide, CpG ODN, E. coli, S. aureus, TSST-1, SEB, anti-CD3+ CD28 and concanavalin A (n = 3_8). TNF, IL-2, IL-6, IL-12p40 and IFNc production, SIRT1_7 and CD40 expression, and proliferation were quantified by real time-PCR, ELISA, flow cytometry and H3-thymidine incorporation. Mice (n = 6_16) were challenged with LPS, TNF/D-galactosamine, E. coli and K. pneumonia titrated to cause either mild or severe infections or shock. Blood was collected to quantify cytokines and bacteria. Mortality was checked regularly. Results: SIRT2 is the most expressed sirtuin in macrophages and myeloid DCs. To test whether SIRT2 impacts on innate immune responses, we generated SIRT2 germline knockout mice. SIRT2-/- mice born at the expected Mendelian ratio and develop normally. The proportions and absolute numbers of DN1-4, DP and SP thymocytes, and of T-cells (DN and SP, naı¨ve and memory), B-cells (immature and mature), DCs (cDCs and pDCs) and granulocytes in the spleen are similar in SIRT2+/+ and SIRT2-/- mice. SIRT2+/+ and SIRT2-/- BMDMs, BMDCs and splenocytes produce cytokines (RNA and protein), upregulate CD40, and proliferate to the same extent. SIRT2+/+ and SIRT2-/- mice respond similarly (cytokine blood levels, bacterial counts and mortality) to non-severe and lethal endotoxemia, E. coli peritonitis, K. pneumonia pneumonia and TNF-induced shock. Conclusions: SIRT2 knockout has no dramatic impact on the development of immune cells and on innate immune responses in vitro and in vivo. Considering that SIRT2 may participate to control metabolic homeostasis, we are currently assessing the impact of SIRT2 deficiency on innate immune responses under metabolic stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classical minor lymphocyte stimulating (Mls) antigens, which induce a strong primary T cell response in vitro, are closely linked to endogenous copies of mouse mammary tumor viruses (MMTV). Expression of Mls genes leads to clonal deletion of T cell subsets expressing specific T cell receptor (TCR) V beta chains. We describe the isolation and characterization of a new exogenous (infectious) MMTV with biological properties similar to the Mls antigen Mls-1a. In vivo administration of either Mls-1a-expressing B cells or the infectious MMTV (SW) led to an increase of T cells expressing V beta 6 followed by their deletion. Surprisingly, different kinetics of deletion were observed with the exogenous virus depending upon the route of infection. Infection through the mucosa led to a slow deletion of V beta 6+ T cells, whereas deletion was rapid after subcutaneous infection. Sequence analysis of the open reading frames in the 3' long terminal repeat of both this exogenous MMTV (SW) and of Mtv-7 (which is closely linked to Mls-1a) revealed striking similarities, particularly in the COOH terminus, which has been implicated in TCR V beta recognition. The identification of an infectious MMTV with the properties of a strong Mls antigen provides a new, powerful tool to study immunity and tolerance in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD1d-dependent invariant Valpha14 (Valpha14i) NKT cells are innate T lymphocytes expressing a conserved semi-invariant TCR, consisting, in mice, of the invariant Valpha14-Jalpha18 TCR alpha-chain paired mostly with Vbeta8.2 and Vbeta7. The cellular requirements for thymic positive and negative selection of Valpha14i NKT cells are only partially understood. Therefore, we generated transgenic mice expressing human CD1d (hCD1d) either on thymocytes, mainly CD4+ CD8+ double positive, or on APCs, the cells implicated in the selection of Valpha14i NKT cells. In the absence of the endogenous mouse CD1d (mCD1d), the expression of hCD1d on thymocytes, but not on APCs, was sufficient to select Valpha14i NKT cells that proved functional when activated ex vivo with the Ag alpha-galactosyl ceramide. Valpha14i NKT cells selected by hCD1d on thymocytes, however, attained lower numbers than in control mice and expressed essentially Vbeta8.2. The low number of Vbeta8.2+ Valpha14i NKT cells selected by hCD1d on thymocytes was not reversed by the concomitant expression of mCD1d, which, instead, restored the development of Vbeta7+ Valpha14i NKT cells. Vbeta8.2+, but not Vbeta7+, NKT cell development was impaired in mice expressing both hCD1d on APCs and mCD1d. Taken together, our data reveal that selective CD1d expression by thymocytes is sufficient for positive selection of functional Valpha14i NKT cells and that both thymocytes and APCs may independently mediate negative selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

alphabeta and gammadelta T cells originate from a common, multipotential precursor population in the thymus, but the molecular mechanisms regulating this lineage-fate decision are unknown. We have identified Sox13 as a gammadelta-specific gene in the immune system. Using Sox13 transgenic mice, we showed that this transcription factor promotes gammadelta T cell development while opposing alphabeta T cell differentiation. Conversely, mice deficient in Sox13 expression exhibited impaired development of gammadelta T cells but not alphabeta T cells. One mechanism of SOX13 function is the inhibition of signaling by the developmentally important Wnt/T cell factor (TCF) pathway. Our data thus reveal a dominant pathway regulating the developmental fate of these two lineages of T lymphocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intestinal anti-inflammatory effects of two probiotics isolated from breast milk, Lactobacillus reuteri and L. fermentum, were evaluated and compared in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Colitis was induced in rats by intracolonic administration of 10 mg TNBS dissolved in 50% ethanol (0.25 ml). Either L. reuteri or L. fermentum was daily administered orally (5 x 10(8) colony-forming units suspended in 0.5 ml skimmed milk) to each group of rats (n 10) for 3 weeks, starting 2 weeks before colitis induction. Colonic damage was evaluated histologically and biochemically, and the colonic luminal contents were used for bacterial studies and for SCFA production. Both probiotics showed intestinal anti-inflammatory effects in this model of experimental colitis, as evidenced histologically and by a significant reduction of colonic myeloperoxidase activity (P<0.05). L. fermentum significantly counteracted the colonic glutathione depletion induced by the inflammatory process. In addition, both probiotics lowered colonic TNFalpha levels (P<0.01) and inducible NO synthase expression when compared with non-treated rats; however, the decrease in colonic cyclo-oxygenase-2 expression was only achieved with L.fermentum administration. Finally, the two probiotics induced the growth of Lactobacilli species in comparison with control colitic rats, but the production of SCFA in colonic contents was only increased when L. fermentum was given. In conclusion, L. fermentum can exert beneficial immunomodulatory properties in inflammatory bowel disease, being more effective than L. reuteri, a probiotic with reputed efficacy in promoting beneficial effects on human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stratified epithelia of mammals contain adult stem/progenitor cells that are instrumental for renewal, regeneration and repair. We have recently demonstrated, using clonal and functional analysis, that all stratified epithelia contain clonogenic stem cells that can respond to skin morphogenetic signals, while cells obtained from simple or pseudo-stratified epithelia cannot. A genome-wide expression analysis favors multilineage priming rather than reprogramming. Collectively, these observations are reminiscent of epithelial metaplasia, a phenomenon in which a cell adopts the phenotype of another epithelial cell, often in response to repeated environmental stress, e.g. smoking, alcohol and micro-traumatisms. Furthermore, they support the notion that metaplasia results from the expression of an unseen potency, revealed by an environmental deficiency. The thymus supposedly contains only progenitor epithelial cells but no stem cells. We have demonstrated that the thymus also contains a small population of clonogenic cells that can function as bona fide multipotent hair follicle stem cells in response to an inductive skin microenvironment and a genome-wide expression analysis indicates that it correlates with robust changes in the expression of genes important for thymus identity. Hence, multilineage priming or reprogramming can account for the fate change of epithelial stem/progenitor cells in response to a varying microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superantigens (SAg) encoded by endogenous mouse mammary tumor viruses (Mtv) interact with the V beta domain of the T cell receptor (TcR-V beta). Presentation of Mtv SAg can lead to stimulation and/or deletion of the reactive T cells, but little is known about the quantitative aspects of SAg presentation. Although monoclonal antibodies have been raised against Mtv SAg, they have not been useful in quantitating SAg protein, which is present in very low amounts in normal cells. Alternative attempts to quantitate Mtv SAg mRNA expression are complicated by the fact that Mtv transcription occurs from multiple loci and in different overlapping reading frames. In this report we describe a novel competitive polymerase chain reaction assay which allows the locus-specific quantitation of SAg expression at the mRNA level in lymphocyte subsets from mouse strains with multiple endogenous Mtv loci. In B cells as well as T cells (CD4+ or CD8+), Mtv-6 SAg is expressed at the highest levels, followed by Mtv-7 SAg and (to a much lesser extent) Mtv-8,9. Consistent with functional Mtv-7 SAg presentation studies, we find that Mtv-7 SAg expression is higher in B cells than in CD8+ T cells and very low in the CD4+ subset. The overall hierarchy in Mtv SAg expression (i.e. Mtv-6 &gt; Mtv-7 &gt; Mtv 8,9) was also observed for mRNA isolated from neonatal thymus. Furthermore, the kinetics of intrathymic deletion of the corresponding TcR-V beta domains during ontogeny correlated with the levels of Mtv SAg expression. Collectively our data suggest that T cell responses to Mtv SAg are largely controlled by SAg expression levels on presenting cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Recent advances in characterizing the immune recovery of HIV-1-infected people have highlighted the importance of the thymus for peripheral T-cell diversity and function. The aim of this study was to investigate differences in immune reconstitution profiles after highly active antiretroviral therapy (HAART) between HIV-children and adults. METHODS HIV patients were grouped according to their previous clinical and immunological status: 9 HIV-Reconstituting-adults (HIV-Rec-adults) and 10 HIV-Reconstituting-children (HIV-Rec-children) on HAART with viral load (VL) or=500 cells/microL at least during 6 months before the study and CD4+

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Via a transcription factor, Foxp3, immunoregulatory CD4(+)CD25(+) T cells (T reg cells) play an important role in suppressing the function of other T cells. Adoptively transferring high numbers of T reg cells can reduce the intensity of the immune response, thereby providing an attractive prospect for inducing tolerance. Extending our previous findings, we describe an in vivo approach for inducing rapid expansion of T reg cells by injecting mice with interleukin (IL)-2 mixed with a particular IL-2 monoclonal antibody (mAb). Injection of these IL-2-IL-2 mAb complexes for a short period of 3 d induces a marked (>10-fold) increase in T reg cell numbers in many organs, including the liver and gut as well as the spleen and lymph nodes, and a modest increase in the thymus. The expanded T reg cells survive for 1-2 wk and are highly activated and display superior suppressive function. Pretreating with the IL-2-IL-2 mAb complexes renders the mice resistant to induction of experimental autoimmune encephalomyelitis; combined with rapamycin, the complexes can also be used to treat ongoing disease. In addition, pretreating mice with the complexes induces tolerance to fully major histocompatibility complex-incompatible pancreatic islets in the absence of immunosuppression. Tolerance is robust and the majority of grafts are accepted indefinitely. The approach described for T reg cell expansion has clinical potential for treating autoimmune disease and promoting organ transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME La mémoire immunologique est essentielle durant la vie et permet aux lymphocytes de répondre plus rapidement et efficacement lors d'une deuxième rencontre avec un antigène connu. Les facteurs contrôlant l'homéostasie des cellules T CD8 mémoires in vivo ne sont pas encore bien définis. Cependant, la prolifération homéostatique de ces cellules dans un hôte déplété en cellules hématopoietiques nécessite l'intéraction du TCR avec les molecules du MHC de class I du soi. De plus, le rôle de cytokines, telles que 1'IL-15 et l'IL-7, est essentiel dans ce mécanisme, aussi bien que dans la maintenance des cellules T CD8 mémoires. Puisque la protéine c-Myc - impliquée dans des mécanismes tells que la division, la prolifération, l'apoptose et la differentiation - a été définie comme étant impliquée dans la réponse à différentes cytokines, nous nous sommes intéressés à l'analyse de l'homéostasie des lymphocytes T CD8 mémoires dans des souris déficientes en c-Myc (c_rnycΔORF/+), qui expriment un niveau réduit de cette protéine. Bien que le développement des cellules T dans le thymus soit normal dans les souris c_rnycΔORF/+, nous avons observé une réduction de 2 à 3 fois dans la population des cellules T CD8 de phenotype mémoire (CD44+) dans les organes lymphoïdes de la périphérie de ces souris. Cette différence ne correspond pas à une réduction de prolifération ou d'expression de protéines de survie telles que Bel-2. Cependant, la prolifération homéostatique de cellules T CD8 c_rnycΔORF/+, mais pas T CD4 c_rnycΔORF/+, est reduite de manière dramatique lorsqu'elles sont transférées dans un hôte irradié. De plus, le transfert adoptif de lymphocytes T dans des souris irradiées déficientes en l'IL-15 nous a permis de montrer que la prolifération homéostatique dépendante de l'IL-15 des cellules T CD8 nécessite l'expression de c-Myc. De plus, contrairement aux cellules T CD8 CD44+ de type sauvage, nous avons observé que l'expansion induite par l'IL-15 des cellules T CD8 CD44+ c_rnycΔORF/+ est altérée aussi bien in vivo (en réponse à une injection de polyI:C) et in vitro. Par conséquent, nos résultats identifient c-Myc comme une nouvelle protéine régulatrice de la signalisation par l'IL-15 impliquée dans l'homéostasie des cellules T CD8 CD44+. SUMMARY Immunological memory is essential throughout life and allows memory lymphocytes to respond faster and more efficiently upon re-encounter of a known antigen. Factors controlling homeostasis of memory CD8 T cells under steady-state conditions in vivo are currently not well defined. However, the homeostatic proliferation of memory CD8 T cells in lymphopenic hosts requires the interaction of the TCR with self MHC class I molecules. In addition, cytokines, such as IL-15 and to a lesser extent IL-7, are essential for both homeostatic proliferation and maintenance of memory CD8 T cells. Since c-Myc, a proto-oncogene involved in cell division, proliferation, apoptosis and differentiation, has been widely implicated in responsiveness to cytokines, we were interested in analyzing homeostasis of memory CD8 T cells in c-myc hypomorph (c_rnycΔORF/+) mice, which express reduced levels of c-Myc. Although T cell development in the thymus was normal in c_rnycΔORF/+ mice, we found a selective 2- to 3-fold reduction in the memory-phenotype CD44high CD8 T cell population in the periphery. Reduced numbers of CD44high CD8 T cells did not correlate with decreased steady-state turnover rate or low expression of survival factors such as Bcl- 2. However, homeostatic proliferation of c_rnycΔORF/+ CD8 T cells, but not c_rnycΔORF/+ CD4 T cells, was dramatically reduced upon transfer into sublethally irradiated wild-type recipients. In addition, upon transfer of c_rnycΔORF/+ and c-myc WT cells into IL-15-/- mice, we observed that IL-15-induced homeostatic proliferation of CD8 T cells requires c-Myc. Moreover, in contrast to c-myc WT CD44high CD8 T cells, IL-15-induced expansion of c_rnycΔORF/+ CD44high CD8 T cells was strongly impaired both in vivo (in response to polyI:C injection) and in vitro. Collectively, our data identify c-Myc as a novel downstream regulator of IL-15 signaling involved in homeostasis of memory CD8 T cells.