Role of the microenvironment on epithelial stem cell fate
Data(s) |
2010
|
---|---|
Resumo |
Stratified epithelia of mammals contain adult stem/progenitor cells that are instrumental for renewal, regeneration and repair. We have recently demonstrated, using clonal and functional analysis, that all stratified epithelia contain clonogenic stem cells that can respond to skin morphogenetic signals, while cells obtained from simple or pseudo-stratified epithelia cannot. A genome-wide expression analysis favors multilineage priming rather than reprogramming. Collectively, these observations are reminiscent of epithelial metaplasia, a phenomenon in which a cell adopts the phenotype of another epithelial cell, often in response to repeated environmental stress, e.g. smoking, alcohol and micro-traumatisms. Furthermore, they support the notion that metaplasia results from the expression of an unseen potency, revealed by an environmental deficiency. The thymus supposedly contains only progenitor epithelial cells but no stem cells. We have demonstrated that the thymus also contains a small population of clonogenic cells that can function as bona fide multipotent hair follicle stem cells in response to an inductive skin microenvironment and a genome-wide expression analysis indicates that it correlates with robust changes in the expression of genes important for thymus identity. Hence, multilineage priming or reprogramming can account for the fate change of epithelial stem/progenitor cells in response to a varying microenvironment. |
Identificador |
http://serval.unil.ch/?id=serval:BIB_39D3A4071F6E isbn:0301-4681 doi:10.1016/j.diff.2010.09.167 isiid:000283589700028 |
Idioma(s) |
en |
Fonte |
16th International Conference on the International Society of Differentiation |
Palavras-Chave | #; |
Tipo |
info:eu-repo/semantics/conferenceObject inproceedings |