999 resultados para Sistemas inteligentes. Redes de escoamento de petróleo. Lógica fuzzy
Resumo:
A difusão da educação baseada na Web está trazendo uma série de mudanças nesta área. Uma dessas mudanças está na forma de como se avaliar as atividades dos alunos remotos, não só através de tarefas tradicionais como testes, mas verificando, em tempo-real, as ações dos alunos e assim possibilitando ao professor um acompanhamento mais completo das atividades dos estudantes. De acordo com os recursos computacionais existentes, a utilização de um Sistema de Alertas é a opção que melhor se adequa a estas finalidades, pois com este tipo de sistema é possível acompanhar as atividades dos alunos em cursos a distância. O objetivo deste trabalho é apresentar um Sistema de Alertas Inteligentes para apoio ao ensino, que detecta problemas nas atividades dos alunos em cursos na Web e realiza ações corretivas adequadas. Este sistema está parcialmente integrado ao ambiente Tapejara do Instituto de Informática da UFRGS – Sistemas Inteligentes de Ensino na Web - que consiste em um sistema de construção e acompanhamento de cursos disponibilizados via Internet. A principal característica do Sistema de Alertas Inteligentes é a busca de situações críticas como, por exemplo: aluno apresenta baixo desempenho nos exercícios, a estratégia de ensino não corresponde ao perfil do estudante, aluno não está comparecendo às atividades do curso, etc. Com isto, este sistema pode auxiliar o professor (tutor virtual) a ter um acompanhamento mais preciso sobre as atividades realizadas pelo estudante e assim, adaptar as aulas às características do aluno, sem, com isto, acarretar numa sobrecarga de trabalho.
Resumo:
As redes neurais podem ser uma alternativa aos modelos paramétricos tradicionais para a precificação de opções quando a dinâmica do ativo primário não for conhecida ou quando a equação associada à condição de não-arbitragem não puder ser resolvida analiticamente. Este trabalho compara a performance do modelo tradicional de Black-Scholes e as redes neurais. Os modelos foram utilizados para precificar e realizar a cobertura dinâmica das opções de compra das ações de Telebrás. Os resultados obtidos sugerem que as redes neurais deveriam ser consideradas pelos operadores de opções como uma alternativa aos modelos tradicionais.
Resumo:
A segurança no ambiente de redes de computadores é um elemento essencial para a proteção dos recursos da rede, dos sistemas e das informações. Os mecanismos de segurança normalmente empregados são criptografia de dados, firewalls, mecanismos de controle de acesso e sistemas de detecção de intrusão. Os sistemas de detecção de intrusão têm sido alvo de várias pesquisas, pois é um mecanismo muito importante para monitoração e detecção de eventos suspeitos em um ambiente de redes de computadores. As pesquisas nessa área visam aprimorar os mecanismos de detecção de forma a aumentar a sua eficiência. Este trabalho está focado na área de detecção de anomalias baseada na utilização de métodos estatísticos para identificar desvios de comportamento e controlar o acesso aos recursos da rede. O principal objetivo é criar um mecanismo de controle de usuários da rede, de forma a reconhecer a legitimidade do usuário através de suas ações. O sistema proposto utilizou média e desvio padrão para detecção de desvios no comportamento dos usuários. Os resultados obtidos através da monitoração do comportamento dos usuários e aplicação das medidas estatísticas, permitiram verificar a sua validade para o reconhecimento dos desvios de comportamento dos usuários. Portanto, confirmou-se a hipótese de que estas medidas podem ser utilizadas para determinar a legitimidade de um usuário, bem como detectar anomalias de comportamento. As análises dos resultados de média e desvio padrão permitiram concluir que, além de observar os seus valores estanques, é necessário observar o seu comportamento, ou seja, verificar se os valores de média e desvio crescem ou decrescem. Além da média e do desvio padrão, identificou-se também a necessidade de utilização de outra medida para refletir o quanto não se sabe sobre o comportamento de um usuário. Esta medida é necessária, pois a média e o desvio padrão são calculados com base apenas nas informações conhecidas, ou seja, informações registradas no perfil do usuário. Quando o usuário faz acessos a hosts e serviços desconhecidos, ou seja, não registrados, eles não são representados através destas medidas. Assim sendo, este trabalho propõe a utilização de uma medida denominada de grau de desconhecimento, utilizada para medir quantos acessos diferentes do seu perfil o usuário está realizando. O sistema de detecção de anomalias necessita combinar as medidas acima descritas e decidir se deve tomar uma ação no sistema. Pra este fim, propõe-se a utilização de sistemas de regras de produção e lógica fuzzy, que permitem a análise das medidas resultantes e execução do processo de decisão que irá desencadear uma ação no sistema. O trabalho também discute a integração do sistema de detecção de intrusão proposto à aplicação de gerenciamento SNMP e ao gerenciamento baseado em políticas.
Resumo:
The rapid growth of urban areas has a significant impact on traffic and transportation systems. New management policies and planning strategies are clearly necessary to cope with the more than ever limited capacity of existing road networks. The concept of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting to increase road capacity by means of physical modifications to the infrastructure, the premise of ITS relies on the use of advanced communication and computer technologies to handle today’s traffic and transportation facilities. Influencing users’ behaviour patterns is a challenge that has stimulated much research in the ITS field, where human factors start gaining great importance to modelling, simulating, and assessing such an innovative approach. This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and transportation systems in the light of the new performance measures brought about by ITS technologies. Agent features have good potentialities to represent those components of a system that are geographically and functionally distributed, such as most components in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is presented as an alternative to traditional models used to represent the driver behaviour within microscopic simulation allowing for an explicit representation of users’ mental states. Basic concepts of ITS and MAS are presented, as well as some application examples related to the subject. This has motivated the extension of an existing microscopic simulation framework to incorporate MAS features to enhance the representation of drivers. This way demand is generated from a population of agents as the result of their decisions on route and departure time, on a daily basis. The extended simulation model that now supports the interaction of BDI driver agents was effectively implemented, and different experiments were performed to test this approach in commuter scenarios. MAS provides a process-driven approach that fosters the easy construction of modular, robust, and scalable models, characteristics that lack in former result-driven approaches. Its abstraction premises allow for a closer association between the model and its practical implementation. Uncertainty and variability are addressed in a straightforward manner, as an easier representation of humanlike behaviours within the driver structure is provided by cognitive architectures, such as the BDI approach used in this work. This way MAS extends microscopic simulation of traffic to better address the complexity inherent in ITS technologies.
Resumo:
Com as recentes tecnologias de fabricação é possível integrar milhões de transistores em um único chip, permitindo a criação dos chamados System-on-Chip (SoCs), que integram em um único chip um grande número de componentes (tipicamente blocos reutilizáveis conhecidos por núcleos). Quanto mais complexos forem estes sistemas, melhores técnicas de projeto serão necessárias para também reduzir o tempo e custo do projeto. Uma destas técnicas, chamada de Network-on-Chip (NoC), permite melhorar a performance da comunicação entre os núcleos e, ao mesmo tempo, fornecer uma plataforma de comunicação escalável e que pode ser reutilizada para um grande número de sistemas. Uma NoC pode ser definida como uma estrutura de roteadores e canais ponto-a-ponto que interconectam os núcleos de um sistema, provendo o suporte de comunicação entre eles. Os dados são transmitidos pela rede na forma de mensagens, que podem ser divididas em unidades menores chamadas de pacote. Uma das desvantagens desta plataforma de comunicação é o impacto na área do sistema causado pelos roteadores. Dentro deste contexto, este trabalho apresenta uma arquitetura de roteador de baixo custo, com o objetivo de permitir o uso de NoCs em sistemas onde a área do roteador representará um grande impacto no custo do sistema. A arquitetura deste roteador, chamado de Tonga, é baseada em um roteador chamado RASoC, um soft-core para SoCs. Nesta dissertação será apresentada também uma rede heterogênea, baseada na rede SoCIN, e composta por dois tipos de roteadores – RASoC e Tonga. Estes roteadores visam diferentes objetivos: Rasoc alcança uma maior performance comparada ao Tonga, mas ocupa área consideravelmente maior. Potencialmente, uma NoC heterogênea otimizada pode ser desenvolvida combinando estes roteadores, procurando o melhor compromisso entre área e latência. Os modelos desenvolvidos permitem a estimativa de área e do desempenho das arquiteturas de comunicação propostas e são apresentados resultados de performance para algumas aplicações.
Resumo:
The number of applications based on embedded systems grows significantly every year, even with the fact that embedded systems have restrictions, and simple processing units, the performance of these has improved every day. However the complexity of applications also increase, a better performance will always be necessary. So even such advances, there are cases, which an embedded system with a single unit of processing is not sufficient to achieve the information processing in real time. To improve the performance of these systems, an implementation with parallel processing can be used in more complex applications that require high performance. The idea is to move beyond applications that already use embedded systems, exploring the use of a set of units processing working together to implement an intelligent algorithm. The number of existing works in the areas of parallel processing, systems intelligent and embedded systems is wide. However works that link these three areas to solve any problem are reduced. In this context, this work aimed to use tools available for FPGA architectures, to develop a platform with multiple processors to use in pattern classification with artificial neural networks
Resumo:
The area of the hospital automation has been the subject a lot of research, addressing relevant issues which can be automated, such as: management and control (electronic medical records, scheduling appointments, hospitalization, among others); communication (tracking patients, staff and materials), development of medical, hospital and laboratory equipment; monitoring (patients, staff and materials); and aid to medical diagnosis (according to each speciality). This thesis presents an architecture for a patient monitoring and alert systems. This architecture is based on intelligent systems techniques and is applied in hospital automation, specifically in the Intensive Care Unit (ICU) for the patient monitoring in hospital environment. The main goal of this architecture is to transform the multiparameter monitor data into useful information, through the knowledge of specialists and normal parameters of vital signs based on fuzzy logic that allows to extract information about the clinical condition of ICU patients and give a pre-diagnosis. Finally, alerts are dispatched to medical professionals in case any abnormality is found during monitoring. After the validation of the architecture, the fuzzy logic inferences were applied to the trainning and validation of an Artificial Neural Network for classification of the cases that were validated a priori with the fuzzy system
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
This work proposes hardware architecture, VHDL described, developed to embedded Artificial Neural Network (ANN), Multilayer Perceptron (MLP). The present work idealizes that, in this architecture, ANN applications could easily embed several different topologies of MLP network industrial field. The MLP topology in which the architecture can be configured is defined by a simple and specifically data input (instructions) that determines the layers and Perceptron quantity of the network. In order to set several MLP topologies, many components (datapath) and a controller were developed to execute these instructions. Thus, an user defines a group of previously known instructions which determine ANN characteristics. The system will guarantee the MLP execution through the neural processors (Perceptrons), the components of datapath and the controller that were developed. In other way, the biases and the weights must be static, the ANN that will be embedded must had been trained previously, in off-line way. The knowledge of system internal characteristics and the VHDL language by the user are not needed. The reconfigurable FPGA device was used to implement, simulate and test all the system, allowing application in several real daily problems
Resumo:
Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to small devices such as digital cameras and cell phones being used primarily for dealing with the uncertainties in the modeling of real systems. However, commercial implementations of Fuzzy systems are not general purpose and do not have portability to different hardware platforms. Thinking about these issues this work presents the implementation of an open source development environment that consists of a desktop system capable of generate Graphically a general purpose Fuzzy controller and export these parameters for an embedded system with a Fuzzy controller written in Java Platform Micro Edition To (J2ME), whose modular design makes it portable to any mobile device that supports J2ME. Thus, the proposed development platform is capable of generating all the parameters of a Fuzzy controller and export it in XML file, and the code responsible for the control logic that is embedded in the mobile device is able to read this file and start the controller. All the parameters of a Fuzzy controller are configurable using the desktop system, since the membership functions and rule base, even the universe of discourse of the linguistic terms of output variables. This system generates Fuzzy controllers for the interpolation model of Takagi-Sugeno. As the validation process and testing of the proposed solution the Fuzzy controller was embedded on the mobile device Sun SPOT ® and used to control a plant-level Quanser®, and to compare the Fuzzy controller generated by the system with other types of controllers was implemented and embedded in sun spot a PID controller to control the same level plant of Quanser®
Resumo:
The stability of synchronous generators connected to power grid has been the object of study and research for years. The interest in this matter is justified by the fact that much of the electricity produced worldwide is obtained with the use of synchronous generators. In this respect, studies have been proposed using conventional and unconventional control techniques such as fuzzy logic, neural networks, and adaptive controllers to increase the stabilitymargin of the systemduring sudden failures and transient disturbances. Thismaster thesis presents a robust unconventional control strategy for maintaining the stability of power systems and regulation of output voltage of synchronous generators connected to the grid. The proposed control strategy comprises the integration of a sliding surface with a linear controller. This control structure is designed to prevent the power system losing synchronism after a sudden failure and regulation of the terminal voltage of the generator after the fault. The feasibility of the proposed control strategy was experimentally tested in a salient pole synchronous generator of 5 kVA in a laboratory structure
Sistema inteligente para detecção de manchas de óleo na superfície marinha através de imagens de SAR
Resumo:
Oil spill on the sea, accidental or not, generates enormous negative consequences for the affected area. The damages are ambient and economic, mainly with the proximity of these spots of preservation areas and/or coastal zones. The development of automatic techniques for identification of oil spots on the sea surface, captured through Radar images, assist in a complete monitoring of the oceans and seas. However spots of different origins can be visualized in this type of imaging, which is a very difficult task. The system proposed in this work, based on techniques of digital image processing and artificial neural network, has the objective to identify the analyzed spot and to discern between oil and other generating phenomena of spot. Tests in functional blocks that compose the proposed system allow the implementation of different algorithms, as well as its detailed and prompt analysis. The algorithms of digital image processing (speckle filtering and gradient), as well as classifier algorithms (Multilayer Perceptron, Radial Basis Function, Support Vector Machine and Committe Machine) are presented and commented.The final performance of the system, with different kind of classifiers, is presented by ROC curve. The true positive rates are considered agreed with the literature about oil slick detection through SAR images presents
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS