979 resultados para Salts.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New monometallic complex salts of the form X-2[M(L)(2)] [M = Ni2+, X = (CH3)(2)NH2+(1); M = Ni2+, X = (CH3)(4)N+ (2); M = Ni2+, X = (C2H5)(4)N+(3); M = Ni2+, X = (C3H7)(4)N+(4); M = Ni2+; X = (C6H13)(4)N+) (5); M = Pd2+,X = (CH3)(2)NH2+(6); M = Pd2+, X= (C2H5)(4)N+(7); M = Pd2+, X= (C3H7)(4)N+(8); M = Pd2+, X = (C6H13)(4)N+ (9); M = Pt2+, X = (CH3)(2)NH2+(10); L = p-tolylsulfonyldithiocarbimate (CH3C6H4SO2N=CS22 )] have been prepared and characterized by elemental analysis, IR, H-1 and C-13 NMR and UV-Vis spectroscopy; 1, 3, 4 and 5 by X-ray crystallography. In 1, 3, 4 and 5, the Ni atom is four coordinate with a square planar environment being bonded to four sulfur atoms from two bidentate ligands. All the salts are weakly conducting (sigma(rt) = 10 (7) to 10 (14) Scm (1)) because of the lack of significant S center dot center dot center dot S intermolecular interactions between complex anions [M(L)(2)](2) in the solid state however, they show behavior of semiconductors in the temperature range 353-453 K. All the Pd(II) and Pt(II) salts exhibited phtotolumeniscent emissions near visible region in solution at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of backbone modified peptides of general formula Boc-Xx-m-ABA-Yy-OMe where m-ABA is meta-aminobenzoic acid and Xx and Yy are natural amino acids such as Phe, Gly, Pro, Leu, Ile, Tyr and Trp etc., are found to self-assemble into soft nanovesicular structures in methanol-water solution (9:1 by v/v). At higher concentration the peptides generate larger vesicles which are formed through fusion of smaller vesicles. The formation of vesicles has been facilitated through the participation of various noncovalent interactions such as aromatic pi-stacking, hydrogen bonding and hydrophobic interactions. Model study indicates that the pi-stacking induced self-assembly, mediated by m-ABA is essential for well structured vesicles formation. The presence of conformationally rigid m-ABA in the backbone of the peptides also helps to form vesicular structures by restricting the conformational entropy. The vesicular structures get disrupted in presence of various salts such as KCl, CaCl(2), N(n-Bu)(4)Br and (NH(4))(2)SO(4) in methanol-water solution. Fluorescence microscopy and UV studies reveal that the soft nanovesicles encapsulate organic dye molecules such as Rhodamine B and Acridine Orange which could be released through salts induced disruption of vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the fatty acid composition of the Longissimus muscle from carcasses of Nellore steers fed diets with calcium salts of fatty acids (CSFA) and high moisture corn. Forty eight steers were fed during 70 days four diets containing dry corn (DC), high moisture corn (HM). dry corn plus CSFA (DC-CSFA) or high moisture corn plus CSFA (HM-CSFA). Fatty acid composition of the Longissimus muscle was determined by gas chromatography. Corn type had no effect on the ether extract percentage and in the content of the majority of the fatty acids, although steers fed HMC showed higher levels of polyunsaturated fatty acids and polyunsaturated/saturated ratio. Feeding CSFA increased ether extract percentage but had no effect on total of saturated, unsaturated and saturated: unsaturated ratio. Both high moisture corn and calcium salts of fatty acids increased CIA (cis9, trans11) and total CIA concentrations in intramuscular fat (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, an improved refined crystal and molecular structure re-determination, and the thermal decomposition behavior of two Zn(II) derivatives of isocinchomeronic acid (2,5-pyridinedicarboxylic acid or H(2)2,5-pydc) are presented. [Zn(2,5-pydc)(H(2)O)(3)Zn(2,5-pydc)(H(2)O)(2)](2) (1) crystallizes in the triclinic P-1 space group with a = 7.106(2), b = 11.450(2), c = 11.869(1) angstrom, alpha = 107.29(1), beta = 104.08(1), gamma = 90.32(2)degrees, and Z = 2. [Zn(2,5-pydc)(H(2)O)(2)] center dot H(2)O (2) is orthorhombic (P2(1)2(1)2(1) space group), with a = 7.342(1), b = 9.430(1), c = 13.834(2) angstrom, and Z = 4. The structures were refined to agreement R(1)-factors of 0.0315 (1) and 0.0336 (2). Complex (1) is arranged as molecular Zn(4)(2,5-pydc)(4)(H(2)O)(10) tetramers, the cages of which define channels that remain unblocked by anions. Compound (2) is polymeric with Zn(2,5-pydc)(H(2)O)(2) and Zn(2,5-pydc)(H(2)O)(3) units linked through bridging ligands. Both compounds were synthesized under mild conditions in aqueous media, without need to resort to hydrothermal media. Changing the pH from 4.51 to 5.75 suffices to direct the chemical processes toward the orthorhombic compound rather than to the triclinic one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast, high-yielding synthesis of diaryl ethers with use of mild and metal-free conditions has been developed. The scope includes bulky ortho-substituted diaryl ethers, which are difficult to obtain by metal-catalyzed protocols. Halo-substituents, racemization-prone amino acid derivatives, and heteroaromatics are also tolerated. The methodology is expected to be of high utility in the synthesis of complex molecules and in the pharmaceutical industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of CaCl(2), Ca(NO(3))(2), CaSO(4), CaCO(3) and Ca(3)(PO(4))(2) on the flow behavior of xanthan gum solutions was investigated. Regardless the concentration and type of calcium salt used, xanthan solutions presented pseudoplastic behavior. The soluble salts (CaCl(2) and Ca(NO(3))(2)) induced the disordered state in the xanthan chains at concentration of 1.0 g/L or 10 g/L, decreasing the flow consistency index (K) values. At 100 g/L soluble salts K values were similar to those found for pure xanthan solutions, whereas at the same concentration of insoluble particles the K values increased 20%. The adsorption of xanthan gum onto Si/SiO(2) surfaces in the presence of calcium salts was investigated by ellipsometry and atomic force microscopy (AFM). The adsorbed layer of xanthan onto Si/SiO(2) consisted of two regions: (i) a thin acid resistant sublayer, where xanthan chains were like highly entangled fibers and (ii) a thick upperlayer, whose morphology was calcium salt dependent. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ultrasound-assisted synthesis of functionalized vinylic chlorides is described by palladium-catalyzed cross-coupling reaction of potassium aryltrifluoroborate salts and (Z)-2-chloro vinylic tellurides. This procedure offers easy access to vinylic chlorides architecture that contains sterically demanding groups in good yields. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. NaCl has proven to be an effective bitterness inhibitor, but the reason remains unclear. The purpose of this study was to examine the influence of a variety of cations and anions on the bitterness of selected oral pharmaceuticals and bitter taste stimuli: pseudoephedrine, ranitidine, acetaminophen, quinine, and urea.
Method. Human psychophysical taste evaluation using a whole mouth exposure procedure was used.
Results. The cations (all associated with the acetate anion) inhibited bitterness when mixed with pharmaceutical solutions to varying degrees. The sodium cation significantly (P < 0.003) inhibited bitterness of the pharmaceuticals more than the other cations. The anions (all associated with the sodium cation) also inhibited bitterness to varying degrees. With the exception of salicylate, the glutamate and adenosine monophosphate anions significantly (P < 0.001) inhibited bitterness of the pharmaceuticals more than the other anions. Also, there were several specific inhibitory interactions between ammonium, sodium and salicylate and certain pharmaceuticals.
Conclusions. We conclude that sodium was the most successful cation and glutamate and AMP were the most successful anions at inhibiting bitterness. Structure forming and breaking properties of ions, as predicted by the Hofmeister series, and other physical-chemical ion properties failed to significantly predict bitterness inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study potential mixture interactions among bitter compounds, selected sodium salts were added to five compounds presented either alone or as binary bitter- ompound mixtures. Each compound was tested at a concentration that elicited ‘weak’ perceived bitterness. The bitter compounds were mixed at these concentrations to form a subset of possible binary mixtures. For comparison, the concentration of each solitary compound was doubled to measure bitterness inhibition at the higher intensity level elicited by the mixtures. The following sodium salts were tested for bitterness inhibition: 100 mM sodium chloride (salty), 100 mM sodium gluconate (salty), 100 and 20 mM monosodium glutamate (umami), and 50 mM adenosine monophosphate disodium salt (umami). Sucrose (sweet) was also employed as a bitterness suppressor. The sodium salts differentially suppressed the bitterness of compounds and their binary combinations. Although most bitter compounds were suppressed, the bitterness of tetralone was not suppressed, nor was the bitterness of the binary mixtures that contained it. In general, the percent suppression of binary mixtures of compounds was predicted by the average percent suppression of its two components. Within the constraints of the present study, the bitterness of mixtures was suppressed by sodium salts and sucrose independently, with few bitter interactions. This is consistent with observations that the bitter taste system integrates the bitterness of multi-compound solutions linearly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bitterness is an ongoing taste problem for both the pharmaceutical and food industries. This paper reports on how salts (NaCI, NaAcetate, NaGluconate, LiCI, KCI) and bitter compounds (urea, quinine-HCI, caffeine, amiloride-HCI, magnesium sulfate, KCI) interact to influence bitter perception. Sodium salts differentially suppress bitterness of these compounds; for example urea bitterness was suppressed by over 70% by sodium salts, while MgSO4 bitterness was not reduced. This study indicated that lithium ions had the same bitter suppressing ability as sodium ions, however the potassium cation had no bitter suppression ability. Changing the anion attached to the sodium did not affect bitter suppression, however, as the anion increased in size, perceived saltiness decreased. This indicates that sodium's mode of action is at the peripheral taste level, rather than a cognitive affect. A second experiment revealed that suppressing bitterness with a sodium salt in a bitter/sweet mixture causes an increase in sweetness. This suggests adding salt to a food matrix will not only increase salt perception, but also potentiate flavor by differential suppression of undesirable tastes such as bitter, while increasing more desirable tastes such as sweet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to provide an alternative to traditional liquid fish oil gelatin capsules, we developed a solid, powdered form of omega-3 fish oil concentrate by forming calcium- and magnesium-fatty acid salts. These salts were produced using a concentrated fish oil ethyl ester that contained in excess of 60% omega-3 fatty acids. The bioavailability of these omega-3 salts was compared with that of fish oil ethyl ester in mice. Animals were given 8 mg of omega-3 fatty acid ethyl ester concentrate (control), calcium- or magnesium-omega-3 salts daily for three weeks. The omega-3 salt products resulted in omega-3 fatty acid content in serum and red blood cell membranes comparable to that produced by the ethyl ester supplementation. In addition, fecal excretion of omega-3 fatty acids was not increased by the presence of calcium or magnesium. In fact, there was a tendency for less omega-3 fatty acids to be excreted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disclosed are methods of making salts of fatty acids (e.g., marine oils) and to salts prepared by the disclosed methods. Methods of using the disclosed salts are also disclosed.