981 resultados para Pipes conections and tripping
Resumo:
Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is considered to be the main pest of maize crops in Brazil. Entomopathogenic nematodes (EPN) may be used to control this pest and exhibit different, unique abilities to search for their hosts. The movement of EPN in relation to S. frugiperda was evaluated. To test for horizontal movement, a styrofoam enclosure filled with sand was divided into segments, nematodes were placed at the entrance to the enclosure and a larva was placed at the end of each division. The same approach was used to evaluate vertical movement; however, PVC pipes were used in this case. In general, the mortality was inversely proportional to the initial distance between host and nematodes. In the vertical displacement test, both nematodes were able to kill the larvae up to a distance of 25 cm. Therefore, the infective juveniles of H. amazonensis and S. arenarium can search out, infect and kill larvae of S. frugiperda at distances of up to 60 cm and 25 cm of horizontal and vertical displacement, respectively.
Resumo:
An adjusted F factor to compute pressure head loss in pipes having multiple, equally spaced outlets is derived for any given distance from the first outlet to the beginning of the pipe. The proposed factor is dependent on the number of outlets and is expressed as a function of the J. E. Christiansen's F factor. It may be useful to irrigation engineers to estimate friction in sprinkle and trickle irrigation laterals and manifolds, as well as gated pipes.
Resumo:
Heat recovery devices are important in the optimization of thermal systems, since they can be used to reduce thermal losses to the environment. The use of heat pipes in these types of equipment can provide heat recoveries of higher efficiency, since both fluid flows are external and there are less contamination risks between the hot and cold fluids. The objective of this work is to study a heat recovery unit constructed with heat pipes and mainly, to analyze the influence of the inclination of the heat pipes on the performance of the equipment. For this analysis, a heat recovery unit was constructed which possesses 48 finned heat pipes in triangular geometry, the evaporator and condenser being of the same length. This unit was tested in an air-air system simulating a heat recovery process in which heat was supplied to the hot fluid by electrical resistances. The results have shown that there exists an inclination at which the system has a better performance, but for higher inclinations there is no significant increase of the efficiency of the system. This paper also presents the influence of inclination of heat pipes on effectiveness and NTU parameters which are important in heat exchanger design.
Resumo:
The objective of this paper is to present a generalized analytical-numerical model of the internal flow in heat pipes. The model formulation is based on two-dimensional formulation of the energy and momentum equations in the vapour and liquid regions and also in the metallic tube. The numerical solution of the model is obtained by using the descretization scheme LOAD and the SIMPLE numerical code. The flow fields, as well as the pressure fields, for different geometries were obtained and discussed. Copyright © 1996 Elsevier Science Ltd.
Resumo:
Smart micro-grids offer a new challenging domain for power theories and metering techniques, because they include a variety of intermittent power sources which positively impact on power flow and distribution losses, but may cause voltage asymmetry and frequency variation. Due to the limited power capability of smart micro-grids, the voltage distortion can also get worse (in case of supplying non-linear loads), affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required, since they form the basis for supply and load characterization. A revision of revenue metering techniques is also needed, to ensure a correct penalization of the loads for their responsibility in generating reactive power, voltage unbalance and distortion. This paper shows that the Conservative Power Theory (CPT) provides a suitable background to cope with smart grids characterization and metering needs. Experimental results validate the proposed approach. © 2010 IEEE.
Resumo:
A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and the application of this technology for detecting buried infrastructure is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured, using geophones, along a line traversing the anticipated run of the pipe. Measurements were made at a test site with a single pressurized polyethylene mains water pipe. Time-extended signals were employed to generate the illuminating wave. Cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation were then calculated and summed using a stacking method to generate a cross-sectional image of the ground. The wide cross-correlation peaks caused by high ground attenuation were partially compensated for by using a generalized cross-correlation function called the smoothed coherence transform. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal was used as an additional reference when calculating the generalized cross-correlation functions. For two out of three tests, the pipe was detected, indicating that this technique will be a valuable addition to the Mapping the Underworld armoury.
Resumo:
In this work, a mathematical model to analyze the impact of the installation and operation of dispersed generation units in power distribution systems is proposed. The main focus is to determine the trade-off between the reliability and operational costs of distribution networks when the operation of isolated areas is allowed. In order to increase the system operator revenue, an optimal power flow makes use of the different energy prices offered by the dispersed generation connected to the grid. Simultaneously, the type and location of the protective devices initially installed on the protection system are reconfigured in order to minimize the interruption and expenditure of adjusting the protection system to conditions imposed by the operation of dispersed units. The interruption cost regards the unsupplied energy to customers in secure systems but affected by the normal tripping of protective devices. Therefore, the tripping of fuses, reclosers, and overcurrent relays aims to protect the system against both temporary and permanent fault types. Additionally, in order to reduce the average duration of the system interruption experienced by customers, the isolated operation of dispersed generation is allowed by installing directional overcurrent relays with synchronized reclose capabilities. A 135-bus real distribution system is used in order to show the advantages of using the mathematical model proposed. © 1969-2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A study was made of the composition of wastes collected from the pipes of the stormwater drainage system of Sorocaba, SP, Brazil (600 thousand inhabitants). A total of 10 samples weighing at least 100 kg each were sorted into 19 items to determine the fraction that can be considered natural (earth/sand, stones, organic matter, and water, the latter determined after oven-drying the samples) and the anthropogenic fraction (the remaining 15 items, especially construction and demolition wastes and packaging). Soil/sand was found to be the main item collected (52.5 % dry weight), followed by the water soaked into the waste (24.3 %), which meant that all the other wastes were saturated in mud, whose contents varied from 6.4 % (glass) to 87.2 % (metalized plastics packaging). In general, 83 % of the collected wastes can be classified as natural, but the remaining 17 % represent 2,000 kg of the most varied types of wastes discarded improperly every day on the streets of the city. This is an alarming amount of wastes that may clog parts of the drainage systems, causing troubles for all the population (like flooding) and must be strongly considered in municipal solid wastes management and in environmental education programs. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Leakage in buried pipes is one of the main concerns for water companies due to the scarcity of potable water sources. Older metallic pipelines have been replaced by plastic pipes in such systems, which makes it more difficult to locate leaks using acoustics and vibration. This is mainly because of the high attenuation of leak signals caused by the damping in the pipe wall. To investigate acoustic methods in leak location in controlled conditions, a bespoke test rig was constructed in the UK. In this paper, data from this test-rig is used to discuss some issues that arise when using two contemporary correlators. Of particular interest, is the way in which a resonance in the system can have a profound effect on the estimate of the position of the leak depending on the way in which the leak noise signals are processed. © (2013) Trans Tech Publications.
Microstructural and electrochemical characterization of friction stir welded duplex stainless steels
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Leaks in pipes are a common issue encountered in the water industry. Acoustic methods are generally successful in finding and locating leaks in metallic pipes, however, they are less effective when applied to plastic pipes. This is because leak-noise signals are heavily attenuated due to high damping in the pipe-wall and sound radiation into the soil. As result, high frequency leak noise does not travel long distances. To determine how far leak noise may travel in a pipe at any frequency, the attenuation of the wave responsible for leak noise propagation should be known. In this paper a new method to estimate this is described. The method is then applied to some measurements made on a bespoke pipe-test rig in the UK, and the results are compared with theoretical predictions.
Resumo:
Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.
Resumo:
In water distribution systems, old metallic pipes have been replaced by plastic pipes due to their deterioration over time. Although acoustic methods are effective in finding leaks in metallic pipes, they have been found to be problematic when applied to plastic pipes due to the high damping within the pipe wall and the surrounding medium. This is responsible for the leak signal not traveling long distances. Moreover, the leak energy in plastic pipes is generally located at a narrow frequency range located at low frequencies. However, the presence of resonances can narrow even more this frequency range. In order to minimise the influence of background noise and resonances on the calculation of the time delay estimate, band-pass filters are often used to supress undesirable frequency components of the noise. The objective of this paper is to investigate the influence of resonances in the pipe system (pipe, valves, connections and hydrants), on the time delay estimate calculated using acoustic signals. Analytical models and actual leak data collected in a bespoke rig located in the United Kingdom are used to investigate this feature.