2 resultados para Pipes conections and tripping
em CaltechTHESIS
Resumo:
Measurements of friction and heat transfer coefficients were obtained with dilute polymer solutions flowing through electrically heated smooth and rough tubes. The polymer used was "Polyox WSR-301", and tests were performed at concentrations of 10 and 50 parts per million. The rough tubes contained a close-packed, granular type of surface with roughness-height-to-diameter ratios of 0.0138 and 0.0488 respectively. A Prandtl number range of 4.38 to 10.3 was investigated which was obtained by adjusting the bulk temperature of the solution. The Reynolds numbers in the experiments were varied from =10,000 (Pr= 10.3) to 250,000 (Pr= 4.38).
Friction reductions as high as 73% in smooth tubes and 83% in rough tubes were observed, accompanied by an even more drastic heat transfer reduction (as high as 84% in smooth tubes and 93% in rough tubes). The heat transfer coefficients with Polyox can be lower for a rough tube than for a smooth one.
The similarity rules previously developed for heat transfer with a Newtonian fluid were extended to dilute polymer solution pipe flows. A velocity profile similar to the one proposed by Deissler was taken as a model to interpret the friction and heat transfer data in smooth tubes. It was found that the observed results could be explained by assuming that the turbulent diffusivities are reduced in smooth tubes in the vicinity of the wall, which brings about a thickening of the viscous layer. A possible mechanism describing the effect of the polymer additive on rough pipe flow is also discussed.
Resumo:
This study concerns the longitudinal dispersion of fluid particles which are initially distributed uninformly over one cross section of a uniform, steady, turbulent open channel flow. The primary focus is on developing a method to predict the rate of dispersion in a natural stream.
Taylor's method of determining a dispersion coefficient, previously applied to flow in pipes and two-dimensional open channels, is extended to a class of three-dimensional flows which have large width-to-depth ratios, and in which the velocity varies continuously with lateral cross-sectional position. Most natural streams are included. The dispersion coefficient for a natural stream may be predicted from measurements of the channel cross-sectional geometry, the cross-sectional distribution of velocity, and the overall channel shear velocity. Tracer experiments are not required.
Large values of the dimensionless dispersion coefficient D/rU* are explained by lateral variations in downstream velocity. In effect, the characteristic length of the cross section is shown to be proportional to the width, rather than the hydraulic radius. The dimensionless dispersion coefficient depends approximately on the square of the width to depth ratio.
A numerical program is given which is capable of generating the entire dispersion pattern downstream from an instantaneous point or plane source of pollutant. The program is verified by the theory for two-dimensional flow, and gives results in good agreement with laboratory and field experiments.
Both laboratory and field experiments are described. Twenty-one laboratory experiments were conducted: thirteen in two-dimensional flows, over both smooth and roughened bottoms; and eight in three-dimensional flows, formed by adding extreme side roughness to produce lateral velocity variations. Four field experiments were conducted in the Green-Duwamish River, Washington.
Both laboratory and flume experiments prove that in three-dimensional flow the dominant mechanism for dispersion is lateral velocity variation. For instance, in one laboratory experiment the dimensionless dispersion coefficient D/rU* (where r is the hydraulic radius and U* the shear velocity) was increased by a factory of ten by roughening the channel banks. In three-dimensional laboratory flow, D/rU* varied from 190 to 640, a typical range for natural streams. For each experiment, the measured dispersion coefficient agreed with that predicted by the extension of Taylor's analysis within a maximum error of 15%. For the Green-Duwamish River, the average experimentally measured dispersion coefficient was within 5% of the prediction.