914 resultados para Physiological Shock.
Resumo:
Using the singular surface theory, an expression for the jump in vorticity across a shock wave of arbitrary shape propagating in a uniform, perfect fluid occupying the space-time of special relativity, has been derived. It has been shown that the jump in vorticity across a shock of given strength and curvature depends only on the velocity of the medium ahead of the shock.
Resumo:
The paper presents a unified picture of the structure of steady one-dimensional shock waves in partially ionized argon in the absence of external electric and magnetic fields. The study is based on a two-temperature three-fluid continuum approach using the Navier-Stokes equations as a model and taking account of nonequilibrium ionization. The analysis of the governing equations is based on the method of matched asymptotic expansions and leads to three layers: (1) a broad thermal layer dominated by electron thermal conduction; (2) an atom-ion shock structured by heavy-particle collisional dissipative mechanisms; and (3) an ionization relaxation layer in which electron-atom inelastic collisions dominate.
Resumo:
In this note, the application of dual-phase damping to a simple shock mount experiencing a harmonic input is described. The damping ratio is a function of the relative displacement between the foundation and the mounted mass. The purpose of employing such a damping is to reduce the absolute transmissibility over the whole frequency range.
Resumo:
Although paying taxes is a key element of a well-functioning society, there is still limited understanding as to why people actually pay their taxes. Models emphasizing that taxpayers make strategic, financially motivated compliance decisions seemingly assume an overly restrictive view of human nature. Law abidance may be more accurately explained by social norms, a concept that has gained growing importance as research attempts to understand the tax compliance puzzle. This study analyzes the influence of psychic stress generated by the possibility of breaking social norms in the tax compliance context. We measure psychic stress using heart rate variability (HRV), which captures the psychobiological or neural equivalents of psychic stress that may arise from the contemplation of real or imagined actions, producing immediate physiologic discomfort. The results of our laboratory experiments provide empirical evidence of a positive correlation between psychic stress and tax compliance, thus underscoring the importance of moral sentiments for tax compliance. We also identify three distinct types of individuals who differ in their levels of psychic stress, tax morale, and tax compliance.
Resumo:
Resurrection plants can withstand extreme dehydration to an air-dry state and then recover upon receiving water. Tripogon loliiformis (F.Muell.) C.E.Hubb. is a largely uncharacterised native Australian desiccation-tolerant grass that resurrects from the desiccated state within 72 h. Using a combination of structural and physiological techniques the structural and physiological features that enable T. loliiformis to tolerate desiccation were investigated. These features include: - (i) a myriad of structural changes such as leaf folding, cell wall folding and vacuole fragmentation that mitigate desiccation stress; - (ii) potential role of sclerenchymatous tissue within leaf folding and radiation protection; - (iii) retention of ~70% chlorophyll in the desiccated state; - (iv) early response of photosynthesis to dehydration by 50% reduction and ceasing completely at 80 and 70% relative water content, respectively; - (v) a sharp increase in electrolyte leakage during dehydration, and; - (vi) confirmation of membrane integrity throughout desiccation and rehydration. Taken together, these results demonstrate that T. loliiformis implements a range of structural and physiological mechanisms that minimise mechanical, oxidative and irradiation stress. These results provide powerful insights into tolerance mechanisms for potential utilisation in the enhancement of stress-tolerance in crop plants.
Resumo:
Predation forms one of the main selective forces in nature and in a vast number of prey species the behavioural responses form the main way to avoid predation. World wide numerous captive breeding programs are used to produce fish and other animal species for conservational reintroductions. However, rearing animals in the absence of predators in captivity has been shown to weaken their predator avoidance skills and lead to behavioural divergence between wild and captive-bred populations. In my thesis I studied the effects of predator odour exposures on antipredator behavioural and physiological responses of captive reared Saimaa Arctic charr. This charr population is the most endangered fish population in Finland and a sample of the remaining population has been taken to captive breeding and used for an extensive reintroduction program. Lowered responsiveness to predators is probably one of the major reasons for the poor survival probability of the charr after release into the wild. The main aims of my thesis were to explore the reasons for behavioural phenotypic variation in this charr population and whether naïve charr young could be trained to recognise their natural predators. The predator species in my thesis were burbot (Lota lota) and pikeperch (Sander lucioperca). In my thesis I showed that the captive-bred charr responded to chemical cues from burbot and pikeperch, but the magnitude of responses was linked to the predator species. The burbot odour increased the spatial odour avoidance of the charr young. On the other hand, in the pikeperch treatment charr reduced their relative swimming activity and tended to show more freezing behaviour relative to the burbot treatment. It seems evident that these different responses are related to the different hunting tactics of predator species. Furthermore, I detected wide between-family differences in antipredator responsiveness (i.e. inherited variation in antipredator behaviours) in this captive stock. Detected differences were greater in the response towards burbot than towards pikeperch. These results, in addition to predator-specific antipredator responses, suggest that there is a clear inherited component in antipredator responsiveness in Saimaa charr population and that the detected inherited differences could explain a part of the behavioural phenotypic variation in this population. In my thesis I also found out that both social learning and direct exposure to live predators enhance the antipredator responsiveness of charr young. In addition, I obtained indications that predator odour exposures (i.e. life-skills training) in alevin and fry stages can fine-tune the innate antipredator responsiveness of charr. Thus, all these methods have the potential to enhance the innate antipredator responsiveness of naïve charr young, possibly also improving the post-release survival of these trained individuals in the wild. However, the next logical phase would be to carry out large scale survival studies in the wild to test this hypothesis. Finally, the results of my thesis emphasize that possible long-term life-skills training methods should take into account not only the behavioural but also the physiological effects of training.
Resumo:
Plants are sessile organisms that have evolved a variety of mechanisms to maintain their cellular homeostasis under stressful environmental conditions. Survival of plants under abiotic stress conditions requires specialized group of heat shock protein machinery, belonging to Hsp70:J-protein family. These heat shock proteins are most ubiquitous types of chaperone machineries involved in diverse cellular processes including protein folding, translocation across cell membranes, and protein degradation. They play a crucial role in maintaining the protein homeostasis by reestablishing functional native conformations under environmental stress conditions, thus providing protection to the cell. J-proteins are co-chaperones of Hsp70 machine, which play a critical role by stimulating Hsp70s ATPase activity, thereby stabilizing its interaction with client proteins. Using genome-wide analysis of Arabidopsis thaliana, here we have outlined identification and systematic classification of J-protein co-chaperones which are key regulators of Hsp70s function. In comparison with Saccharomyces cerevisiae model system, a comprehensive domain structural organization, cellular localization, and functional diversity of A. thaliana J-proteins have also been summarized. Electronic supplementary material The online version of this article (doi:10.1007/s10142-009-0132-0) contains supplementary material, which is available to authorized users.
Resumo:
Plus-stranded (plus) RNA viruses multiply within a cellular environment as tightly integrated units and rely on the genetic information carried within their genomes for multiplication and, hence, persistence. The minimal genomes of plus RNA viruses are unable to encode the molecular machineries that are required for virus multiplication. This sets requisites for the virus, which must form compatible interactions with host components during multiplication to successfully utilize primary metabolites as building blocks or metabolic energy, and to divert the protein synthesis machinery for production of viral proteins. In fact, the emerging picture of a virus-infected cell displays tight integration with the virus, from simple host and virus protein interactions through to major changes in the physiological state of the host cell. This study set out to develop a method for the identification of host components, mainly host proteins, that interact with proteins of Potato virus A (PVA; Potyvirus) during infection. This goal was approached by developing affinity-tag based methods for the purification of viral proteins complexed with associated host proteins from infected plants. Using this method, host membrane-associated viral ribonucleoprotein (RNP) complexes were obtained, and several host and viral proteins could be identified as components of these complexes. One of the host proteins identified using this strategy was a member of the heat shock protein 70 (HSP70) family, and this protein was chosen for further analysis. To enable the analysis of viral gene expression, a second method was developed based on Agrobacterium-mediated virus genome delivery into plant cells, and detection of virally expressed Renilla luciferase (RLUC) as a quantitative measure of viral gene expression. Using this method, it was observed that down-regulation of HSP70 caused a PVA coat protein (CP)-mediated defect associated with replication. Further experimentation suggested that CP can inhibit viral gene expression and that a distinct translational activity coupled to replication, referred to as replication-associated translation (RAT), exists. Unlike translation of replication-deficient viral RNA, RAT was dependent on HSP70 and its co-chaperone CPIP. HSP70 and CPIP together regulated CP turnover by promoting its modification by ubiquitin. Based on these results, an HSP70 and CPIP-driven mechanism that functions to regulate CP during viral RNA replication and/or translation is proposed, possibly to prevent premature particle assembly caused by CP association with viral RNA.
Resumo:
All organisms have evolved mechanisms to acquire thermotolerance. A moderately high temperature activates heat shock genes and triggers thermotolerance towards otherwise lethal high temperature. The focus of this work is the recovery mechanisms ensuring survival of Saccharomyces cerevisiae yeast cells after thermal insult. Yeast cells, first preconditioned at 37˚C, can survive a short thermal insult at 48-50˚C and are able to refold heat-denatured proteins when allowed to recover at physiological temperature 24˚C. The cytoplasmic chaperone Hsp104 is required for the acquisition of thermotolerance and dissolving protein aggregates in the cytosol with the assistance of disaccharide trehalose. In the present study, Hsp104 and trehalose were shown to be required for conformational repair of heat-denatured secretory proteins in the endoplasmic reticulum. A reporter protein was first accumulated in the lumen of endoplasmic reticulum and heat-denatured by thermal insult, and then failed to be repaired to enzymatically active and secretion-competent conformation in the absence of Hsp104 or trehalose. The efficient transport of a glycoprotein CPY, accumulated in the endoplasmic reticulum, to the vacuole after thermal insult also needed the presence of Hsp104 and trehalose. However, proteins synthesized after thermal insult at physiological temperature were secreted with similar kinetics both in the absence and in the presence of Hsp104 or trehalose, demonstrating that the secretion machinery itself was functional. As both Hsp104 and trehalose are cytosolic, a cross-talk between cytosolic and luminal chaperone machineries across the endoplasmic reticulum membrane appears to take place. Global expression profiles, obtained with the DNA microarray technique, revealed that the gene expression was shut down during thermal insult and the majority of transcripts were destroyed. However, the transcripts of small cytosolic chaperones Hsp12 and Hsp26 survived. The first genes induced during recovery were related to refolding of denatured proteins and resumption of de novo protein synthesis. Transcription factors Spt3p and Med3p appeared to be essential for acquisition of full thermotolerance. The transcription factor Hac1p was found to be subject to delayed up-regulation at mRNA level and this up-regulation was diminished or delayed in the absence of Spt3p or Med3p. Consequently, production of the chaperone BiP/Kar2p, a target gene of Hac1p, was diminished and delayed in Δspt3 and Δmed3 deletion strains. The refolding of heat-denatured secretory protein CPY to a transport-competent conformation was retarded, and a heat-denatured reporter enzyme failed to be effectively reactivated in the cytoplasm of the deletion strains.
Resumo:
Oxidative damage to DNA results in the occurrence of 7,8-dihydro-B-oxoguanine (8-oxoG) in the genome. In eubacteria, repair of such damage is initiated by two major base-excision repair enzymes, MutM and MutY. We generated a MutY-deficient strain of Mycobacterium smegmatis to investigate the role of this enzyme in DNA repair. The MutY deficiency in M. smegmatis did not result in either a noteworthy susceptibility to oxidative stress or an increase in the mutation rate. However, rifampicin resistant isolates of the MutY-deficient strain showed distinct mutations in the rifampicin-resistance-determining region of rpoB. Besides the expected C to A (or G to T) mutations, an increase in A to C (or T to G) mutations was also observed. Biochemical characterization of mycobacterial MutY (M. smegmatis and M. tuberculosis) revealed an expected excision of A opposite 8-oxoG in DNA. Additionally, excision of G and T opposite 8-oxoG was detected. MutY formed complexes with DNA containing 8-oxoG: A, 8-oxoG: G or 8-oxoG: T but not 8-oxoG : C pairs. Primer extension reactions in cell-free extracts of M. smegmatis suggested error-prone incorporation of nucleotides into the DNA. Based on these observations, we discuss the physiological role of MutY in specific mutation prevention in mycobacteria.
Resumo:
Septic shock is a common killer in intensive care units (ICU). The most crucial issue concerning the outcome is the early and aggressive start of treatment aimed at normalization of hemodynamics and the early start of antibiotics during the very first hours. The optimal targets of hemodynamic treatment, or impact of hemodynamic treatment on survival after first resuscitation period are less known. The objective of this study was to evaluate different aspects of the hemodynamic pattern in septic shock with special attention to prediction of outcome. In particular components of early treatment and monitoring in the ICU were assessed. A total of 401 patients, 218 with septic shock and 192 with severe sepsis or septic shock were included in the study. The patients were treated in 24 Finnish ICUs during 1999-2005. 295 of the patients were included in the Finnish national epidemiologic Finnsepsis study. We found that the most important hemodynamic variables concerning the outcome were the mean arterial pressures (MAP) and lactate during the first six hours in ICU and the MAP and mixed venous oxygen saturation (SvO2) under 70% during first 48 hours. The MAP levels under 65 mmHg and SvO2 below 70% were the best predictive thresholds. Also the high central venous pressure (CVP) correlated to adverse outcome. We assessed the correlation and agreement of SvO2 and mean central venous oxygen saturation (ScvO2) in septic shock during first day in ICU. The mean SvO2 was below ScvO2 during early sepsis. Bias of difference was 4.2% (95% limits of agreement 8.1% to 16.5%) by Bland-Altman analysis. The difference between saturation values correlated significantly to cardiac index and oxygen delivery. Thus, the ScvO2 can not be used as a substitute of SvO2 in hemodynamic monitoring in ICU. Several biomarkers have been investigated for their ability to help in diagnosis or outcome prediction in sepsis. We assessed the predictive value of N-terminal pro brain natriuretic peptide (NT-proBNP) on mortality in severe sepsis or septic shock. The NT-proBNP levels were significantly higher in hospital nonsurvivors. The NT-proBNP 72 hrs after inclusion was independent predictor of hospital mortality. The acute cardiac load contributed to NTproBNP values at admission, but renal failure was the main confounding factor later. The accuracy of NT-proBNP, however, was not sufficient for clinical decision-making concerning the outcome prediction. The delays in start of treatment are associated to poorer prognosis in sepsis. We assessed how the early treatment guidelines were adopted, and what was the impact of early treatment on mortality in septic shock in Finland. We found that the early treatment was not optimal in Finnish hospitals and this reflected to mortality. A delayed initiation of antimicrobial agents was especially associated with unfavorable outcome.
Resumo:
Thermal properties, namely, Debye temperature, thermal expansion coefficient, heat capacity, and thermal conductivity of γ-Y 2Si2O7, a high-temperature polymorph of yttrium disilicate, were investigated. The anisotropic thermal expansions of γ-Y2Si2O7 powders were examined using high-temperature X-ray diffractometer from 300 to 1373 K and the volumetric thermal expansion coefficient is (6.68±0.35) × 10-6 K-1. The linear thermal expansion coefficient of polycrystalline γ-Y2Si2O7 determined by push-rod dilatometer is (3.90±0.4) × 10-6 K-1, being very close to that of silicon nitride and silicon carbide. Besides, γ-Y2Si2O7 displays a low-thermal conductivity, with a κ value measured below 3.0 W·(m·K) -1 at the temperatures above 600 K. The calculated minimum thermal conductivity, κmin, was 1.35 W·(m·K) -1. The unique combination of low thermal expansion coefficient and low-thermal conductivity of γ-Y2Si2O7 renders it a very competitive candidate material for high temperature structural components and environmental/thermal-barrier coatings. The thermal shock resistance of γ-Y2Si2O7 was estimated by quenching dense materials in water from various temperatures and the critical temperature difference, ΔTc, was determined to be 300 K.