853 resultados para POTENTIAL APPLICATIONS
Resumo:
Globally, cities face a convergence of complex and rapidly evolving challenges, including climate change, resource shortages, population growth and urbanization, and financial pressures. Biophilic urbanism is an emerging design principle capable of considering the multidimensional and interdependent complexities of urban systems and infrastructure, which through the use of natural design features, can meet society’s inherent need for contact with nature, and assist efforts to respond to these growing challenges. Considering the imperative for addressing these challenges, this paper proposes that significant lessons can be learned from existing examples of biophilic urbanism, avoiding ‘re-invention of the wheel’ and facilitating accelerated innovation in other areas. Vauban is a 38-hectare brownfield development located 3 kilometers from the centre of Germany’s ‘ecological capital’ of Freiburg city. It was developed using an innovative process with strong community participation and reinterpreted developer roles to produce an example of integrated sustainability. Innovation in transport, energy, housing, development and water treatment has enabled a relatively high-density, mixed-use development that integrates a considerable amount of nature. This paper discusses Vauban in light of research undertaken over the last two years through the Sustainable Built Environment National Research Centre in Australia, to investigate emerging elements of ‘biophilic urbanism’ (nature-loving cities), and their potential to be mainstreamed within urban environments. The paper considers the interplay between the policies, community dynamics and innovations in Vauban, within the context of the culture, history and practice of sustainability in Germany, and how these have enabled nature to be integrated into the urban environment of Vauban while achieving other desirable goals for urban areas. It highlights potential applications from Vauban for Australian cities.
Resumo:
Due to the lower strength of pure copper (Cu), ceramic particulate or whisker reinforced Cu matrix composites have attracted wide interest in recent years [1–3]. These materials exhibit a combination of excellent thermal and electrical conductivities, high strength retention at elevated temperatures, and high microstructural stability [3]. The potential applications include various electrodes, electrical switches, and X-ray tube components [4].
Resumo:
This paper presents a robust place recognition algorithm for mobile robots that can be used for planning and navigation tasks. The proposed framework combines nonlinear dimensionality reduction, nonlinear regression under noise, and Bayesian learning to create consistent probabilistic representations of places from images. These generative models are incrementally learnt from very small training sets and used for multi-class place recognition. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions, blurring and moving objects. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images, respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.
Resumo:
This contribution outlines Synchrotron-based X-ray micro-tomography and its potential use in structural geology and rock mechanics. The paper complements several recent reviews of X-ray microtomography. We summarize the general approach to data acquisition, post-processing as well as analysis and thereby aim to provide an entry point for the interested reader. The paper includes tables listing relevant beamlines, a list of all available imaging techniques, and available free and commercial software packages for data visualization and quantification. We highlight potential applications in a review of relevant literature including time-resolved experiments and digital rock physics. The paper concludes with a report on ongoing developments and upgrades at synchrotron facilities to frame the future possibilities for imaging sub-second processes in centimetre-sized samples.
Resumo:
As the number of potential applications of Unmanned Aircraft Systems (UAS) grows in civilian operations and national security, National Airworthiness Authorities are under increasing pressure to provide a path for certification and allow UAS integration into the national airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the latter and describes the use of a framework for evaluating robust autonomy of UAS, namely, the autonomous system’s ability to either continue operation in the presence of faults or safely shut down. The paper draws parallels between the proposed evaluation framework and the evaluation of pilots during the licensing process. It also discusses how the data from the proposed evaluation can be uses as an aid for decision making in certification and UAS designs.
Resumo:
This project explored the potential for halogen bonds to predictably organise metal-containing molecular building blocks in crystalline materials. A novel method for the halogen bond mediated crystal engineering of metal complexes was discovered, which led to the preparation of new materials with potential applications in molecular switching devices and advanced memory storage systems.
Resumo:
This paper elaborates on the use of future wireless communication networks for autonomous city vehicles. After addressing the state of technology, the paper explains the autonomous vehicle control system architecture and the Cybercars-2 communication framework; it presents experimental tests of communication-based real-time decision making; and discusses potential applications for communication in order to improve the localization and perception abilities of autonomous vehicles in urban environments.
Resumo:
Background Heatwaves could cause the population excess death numbers to be ranged from tens to thousands within a couple of weeks in a local area. An excess mortality due to a special event (e.g., a heatwave or an epidemic outbreak) is estimated by subtracting the mortality figure under ‘normal’ conditions from the historical daily mortality records. The calculation of the excess mortality is a scientific challenge because of the stochastic temporal pattern of the daily mortality data which is characterised by (a) the long-term changing mean levels (i.e., non-stationarity); (b) the non-linear temperature-mortality association. The Hilbert-Huang Transform (HHT) algorithm is a novel method originally developed for analysing the non-linear and non-stationary time series data in the field of signal processing, however, it has not been applied in public health research. This paper aimed to demonstrate the applicability and strength of the HHT algorithm in analysing health data. Methods Special R functions were developed to implement the HHT algorithm to decompose the daily mortality time series into trend and non-trend components in terms of the underlying physical mechanism. The excess mortality is calculated directly from the resulting non-trend component series. Results The Brisbane (Queensland, Australia) and the Chicago (United States) daily mortality time series data were utilized for calculating the excess mortality associated with heatwaves. The HHT algorithm estimated 62 excess deaths related to the February 2004 Brisbane heatwave. To calculate the excess mortality associated with the July 1995 Chicago heatwave, the HHT algorithm needed to handle the mode mixing issue. The HHT algorithm estimated 510 excess deaths for the 1995 Chicago heatwave event. To exemplify potential applications, the HHT decomposition results were used as the input data for a subsequent regression analysis, using the Brisbane data, to investigate the association between excess mortality and different risk factors. Conclusions The HHT algorithm is a novel and powerful analytical tool in time series data analysis. It has a real potential to have a wide range of applications in public health research because of its ability to decompose a nonlinear and non-stationary time series into trend and non-trend components consistently and efficiently.
Resumo:
This thesis developed a new method for measuring extremely low amounts of organic and biological molecules, using Surface enhanced Raman Spectroscopy. This method has many potential applications, e.g. medical diagnosis, public health, food provenance, antidoping, forensics and homeland security. The method development used caffeine as the small molecule example, and erythropoietin (EPO) as the large molecule. This method is much more sensitive and specific than currently used methods; rapid, simple and cost effective. The method can be used to detect target molecules in beverages and biological fluids without the usual preparation steps.
Resumo:
Systemic lupus erythematosus (SLE) is distinct among autoimmune diseases because of its association with circulating autoantibodies reactive against host DNA. The precise role that anti-DNA antibodies play in SLE pathophysiology remains to be elucidated, and potential applications of lupus autoantibodies in cancer therapy have not previously been explored. We report the unexpected finding that a cell-penetrating lupus autoantibody, 3E10, has potential as a targeted therapy for DNA repair–deficient malignancies. We find that 3E10 preferentially binds DNA single-strand tails, inhibits key steps in DNA single-strand and double-strand break repair, and sensitizes cultured tumor cells and human tumor xenografts to DNA-damaging therapy, including doxorubicin and radiation. Moreover, we demonstrate that 3E10 alone is synthetically lethal to BRCA2-deficient human cancer cells and selectively sensitizes such cells to low-dose doxorubicin. Our results establish an approach to cancer therapy that we expect will be particularly applicable to BRCA2-related malignancies such as breast, ovarian, and prostate cancers. In addition, our findings raise the possibility that lupus autoantibodies may be partly responsible for the intrinsic deficiencies in DNA repair and the unexpectedly low rates of breast, ovarian, and prostate cancers observed in SLE patients. In summary, this study provides the basis for the potential use of a lupus anti-DNA antibody in cancer therapy and identifies lupus autoantibodies as a potentially rich source of therapeutic agents.
Resumo:
Graphene films with different structures were catalytically grown on the silicon substrate pre-deposited with a gold film by hot filament chemical vapor deposition under different conditions, where methane, hydrogen and nitrogen were used as the reactive gases. The morphological and compositional properties of graphene films were studied using advanced instruments including field emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structure and composition of graphene films are changed with the variation of the growth conditions. According to the theory related to thermodynamics, the formation of graphene films was theoretically analyzed and the results indicate that the formation of graphene films is related to the fast incorporation and precipitation of carbon. The electron field emission (EFE) properties of graphene films were studied in a high vacuum system of ∼10-6 Pa and the EFE results show that the turn-on field is in a range of 5.2-5.64 V μm-1 and the maximum current density is about 63 μ A cm-2 at the field of 7.7 V μm-1. These results are important to control the structure of graphene films and have the potential applications of graphene in various nanodevices.
Resumo:
Carbon microcoils (CMCs) have been coated with a nickel-phosphorus (Ni-P) film using an electroless plating process, with sodium hypophosphite as a reducing agent in an alkaline bath. CMC composites have potential applications as microwave absorption materials. The morphology, elemental composition and phases in the coating layer of the CMCs and Ni-coated CMCs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The effects of process parameters such as pH, temperature and coating time of the plating bath on the phosphorus content and deposition rate of the electroless Ni-P coating were studied. The results revealed that a continuous, uniform and low-phosphorous nickel coating was deposited on the surface of the CMCs for 20 min at pH 9.0, plating bath temperature 70 °C. The as-deposited coatings with approximately 4.5 wt.% phosphorus were found to consist of a mix of nano- and microcrystalline phases. The mean particle size of Ni-P nanoparticles on the outer surface of the CMCs was around 11.9 nm. The deposition rate was found to moderately increase with increasing pH, whereas, the phosphorous content of the deposit exhibited a significant decrease. Moreover, the material of the coating underwent a phase transition between an amorphous and a crystalline structure. The thickness of the deposit and the deposition rate may be controlled through careful variation of the coating time and plating bath temperature.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
Resumo:
• Premise of the study: Here we propose a staining protocol using TBO and Ruthenium red in order to reliably identify secondary compounds in the leaves of some species of Myrtaceae. • Methods and results: Leaves of 10 species representing 10 different genera of Myrtaceae were processed and stained using five different combinations of Ruthenium red and TBO. Optimal staining conditions were determined as 1 min of Ruthenium red (0.05% aqueous) and 45 sec of TBO (0.1% aqueous). Secondary compounds clearly identified under this treatment include mucilage in mesophyll, polyphenols in cuticle, lignin in fibers and xylem, tannins and carboxylated polysaccharides in epidermis and pectic substances in primary cell walls. • Conclusions: Potential applications of this protocol include systematic, phytochemical and ecological investigations in Myrtaceae. It might be applicable to other plant families rich in secondary compounds and could be used as preliminary screening method for extraction of these elements.
Resumo:
The growing number of potential applications of Unmanned Aircraft Systems (UAS) in civilian operations and national security is putting pressure of National Airworthiness Authorities to provide a path for certification and allow UAS integration into the national airspace. The success of this integration depends not only on developments in improved UAS reliability and safety, but also on regulations for certification, and methodologies for operational performance and safety assessment. This paper focuses on the latter and describes progress in relation to a previously proposed framework for evaluating robust autonomy of UAS. The paper draws parallels between the proposed evaluation framework and the evaluation of pilots during the licensing process. It discusses how the data from the proposed evaluation can be used as an aid for decision making in certification and UAS designs. Finally, it discusses challenges associated with the evaluation.