940 resultados para PATCH-CLAMP


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The morphological and functional unit of all the living organisms is the cell. The transmembrane proteins, localized in the plasma membrane of cells, play a key role in the survival of the cells themselves. These proteins perform a variety of different tasks, for example the control of the homeostasis. In order to control the homeostasis, these proteins have to regulate the concentration of chemical elements, like ions, inside and outside the cell. These regulations are fundamental for the survival of the cell and to understand them we need to understand how transmembrane proteins work. Two of the most important categories of transmembrane proteins are ion channels and transporter proteins. The ion channels have been depth studied at the single molecule level since late 1970s with the development of patch-clamp technique. It is not possible to apply this technique to study the transporter proteins so a new technique is under development in order to investigate the behavior of transporter proteins at the single molecule level. This thesis describes the development of a nanoscale single liposome assay for functional studies of transporter proteins based on quantitative fluorescence microscopy in a highly-parallel manner and in real time. The transporter of interest is the prokaryotic transporter Listeria Monocytogenes Ca2+-ATPase1 (LMCA1), a structural analogue of the eukaryotic calcium pumps SERCA and PMCA. This technique will allow the characterization of LMCA1 functionality at the single molecule level. Three systematically characterized fluorescent sensors were tested at the single liposome scale in order to investigate if their properties are suitable to study the function of the transporter of interest. Further studies will be needed in order to characterize the selected calcium sensor and pH sensor both implemented together in single liposomes and in presence of the reconstituted protein LMCA1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A patient with an SCN5A p.W822X nonsense mutation, localized in the transmembrane region DII-S4 of the Na(v)1.5 sodium channel and leading to a non-expression of the mutant allele, was prescribed the selective serotonin reuptake inhibitor (SSRI) fluvoxamine (Floxyfral), 100 mg per day. His normal baseline ECG changed to a characteristic Brugada-Type-1-ECG pattern. To investigate whether fluvoxamine may reduce the cardiac sodium current, the effect of this drug was studied on the wild-type voltage-gated cardiac sodium channel Na(v)1.5 stably expressed in HEK293 cells. Patch-clamp recording showed a 50% inhibition of the current at a concentration of 57.3 microM. In our patient, no arrhythmia occurred but the proarrhythmic potential of SSRI in patients with SCN5A mutations cannot be excluded. Therefore, we advise 12-lead ECG control after administering SSRI in these patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 (V(1393)I, K(1584)E) were predicted to confer susceptibility for DM2. Here, we show using patch clamp analysis and total internal reflection fluorescence microscopy, that insulin stimulates TRPM6 activity via a phosphoinositide 3-kinase and Rac1-mediated elevation of cell surface expression of TRPM6. Interestingly, insulin failed to activate the genetic variants TRPM6(V(1393)I) and TRPM6(K(1584)E), which is likely due to the inability of the insulin signaling pathway to phosphorylate TRPM6(T(1391)) and TRPM6(S(1583)). Moreover, by measuring total glycosylated hemoglobin (TGH) in 997 pregnant women as a measure of glucose control, we demonstrate that TRPM6(V(1393)I) and TRPM6(K(1584)E) are associated with higher TGH and confer a higher likelihood of developing GDM. The impaired response of TRPM6(V(1393)I) and TRPM6(K(1584)E) to insulin represents a unique molecular pathway leading to GDM where the defect is located in TRPM6.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

KCNMA1 encodes the α-subunit of the large conductance, voltage and Ca(2+)-activated (BK) potassium channel and has been reported as a target gene of genomic amplification at 10q22 in prostate cancer. To investigate the prevalence of the amplification in other human cancers, the copy number of KCNMA1 was analyzed by fluorescence-in-situ-hybridization (FISH) in 2,445 tumors across 118 different tumor types. Amplification of KCNMA1 was restricted to a small but distinct fraction of breast, ovarian and endometrial cancer with the highest prevalence in invasive ductal breast cancers and serous carcinoma of ovary and endometrium (3-7%). We performed an extensive analysis on breast cancer tissue microarrays (TMA) of 1,200 tumors linked to prognosis. KCNMA1 amplification was significantly associated with high tumor stage, high grade, high tumor cell proliferation, and poor prognosis. Immunofluorescence revealed moderate or strong KCNMA1 protein expression in 8 out of 9 human breast cancers and in the breast cancer cell line MFM223. KCNMA1-function in breast cancer cell lines was confirmed by whole-cell patch clamp recordings and proliferation assays, using siRNA-knockdown, BK channel activators such as 17ß-estradiol and the BK-channel blocker paxilline. Our findings revealed that enhanced expression of KCNMA1 correlates with and contributes to high proliferation rate and malignancy of breast cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The granule cells of the dentate gyrus give rise to thin unmyelinated axons, the mossy fibers. They form giant presynaptic boutons impinging on large complex spines on the proximal dendritic portions of hilar mossy cells and CA3 pyramidal neurons. While these anatomical characteristics have been known for some time, it remained unclear whether functional changes at mossy fiber synapses such as long-term potentiation (LTP) are associated with structural changes. Since subtle structural changes may escape a fine-structural analysis when the tissue is fixed by using aldehydes and is dehydrated in ethanol, rapid high-pressure freezing (HPF) of the tissue was applied. Slice cultures of hippocampus were prepared and incubated in vitro for 2 weeks. Then, chemical LTP (cLTP) was induced by the application of 25 mM tetraethylammonium (TEA) for 10 min. Whole-cell patch-clamp recordings from CA3 pyramidal neurons revealed a highly significant potentiation of mossy fiber synapses when compared to control conditions before the application of TEA. Next, the slice cultures were subjected to HPF, cryosubstitution, and embedding in Epon for a fine-structural analysis. When compared to control tissue, we noticed a significant decrease of synaptic vesicles in mossy fiber boutons and a concomitant increase in the length of the presynaptic membrane. On the postsynaptic side, we observed the formation of small, finger-like protrusions, emanating from the large complex spines. These short protrusions gave rise to active zones that were shorter than those normally found on the thorny excrescences. However, the total number of active zones was significantly increased. Of note, none of these cLTP-induced structural changes was observed in slice cultures from Munc13-1 deficient mouse mutants showing severely impaired vesicle priming and docking. In conclusion, application of HPF allowed us to monitor cLTP-induced structural reorganization of mossy fiber synapses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Voltage-gated sodium channels dysregulation is important for hyperexcitability leading to pain persistence. Sodium channel blockers currently used to treat neuropathic pain are poorly tolerated. Getting new molecules to clinical use is laborious. We here propose a drug already marketed as anticonvulsant, rufinamide. Methods: We compared the behavioral effect of rufinamide to amitriptyline using the Spared Nerve Injury neuropathic pain model in mice. We compared the effect of rufinamide on sodium currents using in vitro patch clamp in cells expressing the voltage-gated sodium channel Nav1.7 isoform and on dissociated dorsal root ganglion neurons to amitriptyline and mexiletine. Results: In naive mice, amitriptyline (20 mg/kg) increased withdrawal threshold to mechanical stimulation from 1.3 (0.6–1.9) (median [95% CI]) to 2.3 g (2.2–2.5) and latency of withdrawal to heat stimulation from 13.1 (10.4–15.5) to 30.0 s (21.8–31.9), whereas rufinamide had no effect. Rufinamide and amitriptyline alleviated injury-induced mechanical allodynia for 4 h (maximal effect: 0.10 ± 0.03 g (mean ± SD) to 1.99 ± 0.26 g for rufinamide and 0.25 ± 0.22 g to 1.92 ± 0.85 g for amitriptyline). All drugs reduced peak current and stabilized the inactivated state of voltage-gated sodium channel Nav1.7, with similar effects in dorsal root ganglion neurons. Conclusions: At doses alleviating neuropathic pain, amitriptyline showed alteration of behavioral response possibly related to either alteration of basal pain sensitivity or sedative effect or both. Side-effects and drug tolerance/compliance are major problems with drugs such as amitriptyline. Rufinamide seems to have a better tolerability profile and could be a new alternative to explore for the treatment of neuropathic pain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TRPV6, a highly calcium-selective member of the transient receptor potential (TRP) channel superfamily, is a major pathway for calcium absorption in the fetal and adult body. It is expressed abundantly in the duodenum, the placenta and exocrine tissues. TRVP6 was postulated to contribute to store-operated calcium channel (SOC) activity in certain cell types such as exocrine cells. In this study, we tested 2-APB, a widely used SOC inhibitor on human TRPV6 (hTRPV6) activity using fluorescence imaging, patch clamp and radioactive tracer techniques in transiently and stably transfected HEK293 cells. We found that the basal calcium and cadmium influx was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells. 2-APB inhibited hTRPV6 activity in both transient and stably transfected cells. This effect was slightly sensitive toward extracellular calcium. The extracellular sodium concentration did not affect the inhibition of hTRPV6 by 2-APB. However, N-methyl-d-glucamine significantly diminished the inhibitory effect of 2-APB presumably through direct interaction with this compound. Furthermore, 2-APB inhibited the activity of TRPV6 orthologs but not human TRPV5. 2-APB may serve as a parental compound for the development of therapeutic strategies specifically targeting the hTRPV6 calcium channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The initiation and maintenance of physiological and pathophysiological oscillatory activity depends on the synaptic interactions within neuronal networks. We studied the mechanisms underlying evoked transient network oscillation in acute slices of the adolescent rat somatosensory cortex and modeled its underpinning mechanisms. Oscillations were evoked by brief spatially distributed noisy extracellular stimulation, delivered via bipolar electrodes. Evoked transient network oscillation was detected with multi-neuron patch-clamp recordings under different pharmacological conditions. The observed oscillations are in the frequency range of 2-5 Hz and consist of 4-12 mV large, 40-150 ms wide compound synaptic events with rare overlying action potentials. This evoked transient network oscillation is only weakly expressed in the somatosensory cortex and requires increased [K+]o of 6.25 mM and decreased [Ca2+]o of 1.5 mM and [Mg2+]o of 0.5 mM. A peak in the cross-correlation among membrane potential in layers II/III, IV and V neurons reflects the underlying network-driven basis of the evoked transient network oscillation. The initiation of the evoked transient network oscillation is accompanied by an increased [K+]o and can be prevented by the K+ channel blocker quinidine. In addition, a shift of the chloride reversal potential takes place during stimulation, resulting in a depolarizing type A GABA (GABAA) receptor response. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), N-methyl-D-aspartate (NMDA), or GABA(A) receptors as well as gap junctions prevents evoked transient network oscillation while a reduction of AMPA or GABA(A) receptor desensitization increases its duration and amplitude. The apparent reversal potential of -27 mV of the evoked transient network oscillation, its pharmacological profile, as well as the modeling results suggest a mixed contribution of glutamatergic, excitatory GABAergic, and gap junctional conductances in initiation and maintenance of this oscillatory activity. With these properties, evoked transient network oscillation resembles epileptic afterdischarges more than any other form of physiological or pathophysiological neocortical oscillatory activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In cardiac muscle the amplitude of Ca(2+) transients can be increased by enhancing Ca(2+) influx. Among the processes leading to increased Ca(2+) influx, agonists of the L-type Ca(2+)-channel can play an important role. Known pharmacological Ca(2+)-channel agonists act on different binding sites on the channel protein, which may lead not only to enhanced peak currents, but also to distinct changes in other biophysical characteristics of the current. In this study, membrane currents were recorded with the patch-clamp technique in the whole-cell configuration in guinea pig isolated ventricular myocytes in combination with confocal fluorescence Ca(2+) imaging techniques and a variety of pharmacological tools. Testing a new positive inotropic steroid-like compound, we found that it increased the L-type Ca(2+)-current by 2.5-fold by shifting the voltage-dependence of activation by 20.2 mV towards negative potentials. The dose-response relationship revealed two vastly different affinities (EC(50(high-affinity))=4.5+/-1.7 nM, EC(50(low-affinity))=8.0+/-1.1 microM) exhibiting differential pharmacological interactions with three classes of Ca(2+)-current antagonists, suggesting more than one binding site on the channel protein. Therefore, we identified and characterized a novel positive inotropic compound (F90927) as a member of a new class of Ca(2+)-channel agonists exhibiting unique features, which set it apart from other presently known L-type Ca(2+)-channel agonists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Brugada syndrome (BS) is an inherited electrical cardiac disorder characterized by right bundle branch block pattern and ST segment elevation in leads V1 to V3 on surface electrocardiogram that can potentially lead to malignant ventricular tachycardia and sudden cardiac death. About 20% of patients have mutations in the only so far identified gene, SCN5A, which encodes the alpha-subunit of the human cardiac voltage-dependent sodium channel (hNa(v)1.5). Fever has been shown to unmask or trigger the BS phenotype, but the associated molecular and the biophysical mechanisms are still poorly understood. We report on the identification and biophysical characterization of a novel heterozygous missense mutation in SCN5A, F1344S, in a 42-year-old male patient showing the BS phenotype leading to ventricular fibrillation during fever. METHODS: The mutation was reproduced in vitro using site-directed mutagenesis and characterized using the patch clamp technique in the whole-cell configuration. RESULTS: The biophysical characterization of the channels carrying the F1344S mutation revealed a 10 mV mid-point shift of the G/V curve toward more positive voltages during activation. Raising the temperature to 40.5 degrees C further shifted the mid-point activation by 18 mV and significantly changed the slope factor in Na(v)1.5/F1344S mutant channels from -6.49 to -10.27 mV. CONCLUSIONS: Our findings indicate for the first time that the shift in activation and change in the slope factor at a higher temperature mimicking fever could reduce sodium currents' amplitude and trigger the manifestation of the BS phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Cellular Ca(2+) waves are understood as reaction-diffusion systems sustained by Ca(2+)-induced Ca(2+) release (CICR) from Ca(2+) stores. Given the recently discovered sensitization of Ca(2+) release channels (ryanodine receptors; RyRs) of the sarcoplasmic reticulum (SR) by luminal SR Ca(2+), waves could also be driven by RyR sensitization, mediated by SR overloading via Ca(2+) pump (SERCA), acting in tandem with CICR. METHODS: Confocal imaging of the Ca(2+) indicator fluo-3 was combined with UV-flash photolysis of caged compounds and the whole-cell configuration of the patch clamp technique to carry out these experiments in isolated guinea pig ventricular cardiomyocytes. RESULTS: Upon sudden slowing of the SERCA in cardiomyocytes with a photoreleased inhibitor, waves indeed decelerated immediately. No secondary changes of Ca(2+) signaling or SR Ca(2+) content due to SERCA inhibition were observed in the short time-frame of these experiments. CONCLUSIONS: Our findings are consistent with Ca(2+) loading resulting in a zone of RyR 'sensitization' traveling within the SR, but inconsistent with CICR as the predominant mechanism driving the Ca(2+) waves. This alternative mode of RyR activation is essential to fully conceptualize cardiac arrhythmias triggered by spontaneous Ca(2+) release.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of the apical dendrites of L2/3 neurons in rat brain slices using dual dendritic-somatic patch-clamp recordings and calcium imaging. Unlike L5 cells, L2/3 dendrites displayed little sag in response to long current pulses, which suggests a low density of I(h) in the dendrites and soma. This was also consistent with a slight increase in input resistance with distance from the soma. Brief current injections into the apical dendrite evoked relatively short (half-width 2-4 ms) dendritic spikes that were isolated from the soma for near-threshold currents at sites beyond the middle of the apical dendrite. Regenerative dendritic potentials and large concomitant calcium transients were also elicited by trains of somatic action potentials (APs) above a critical frequency (130 Hz), which was slightly higher than in L5 neurons. Initiation of dendritic spikes was facilitated by backpropagating somatic APs and could cause an additional AP at the soma. As in L5 neurons, we found that distal dendritic calcium transients are sensitive to a long-lasting block by GABAergic inhibition. We conclude that L2/3 pyramidal neurons can generate dendritic spikes, sharing with L5 pyramidal neurons fundamental properties of dendritic excitability and control by inhibition.