344 resultados para Modellierung
Resumo:
A one-dimensional multi-component reactive fluid transport algorithm, 1DREACT (Steefel, 1993) was used to investigate different fluid-rock interaction systems. A major short coming of mass transport calculations which include mineral reactions is that solid solutions occurring in many minerals are not treated adequately. Since many thermodynamic models of solid solutions are highly non-linear, this can seriously impact on the stability and efficiency of the solution algorithms used. Phase petrology community saw itself faced with a similar predicament 10 years ago. To improve performance and reliability, phase equilibrium calculations have been using pseudo compounds. The same approach is used here in the first, using the complex plagioclase solid solution as an example. Thermodynamic properties of a varying number of intermediate plagioclase phases were calculated using ideal molecular, Al-avoidance, and non-ideal mixing models. These different mixing models can easily be incorporated into the simulations without modification of the transport code. Simulation results show that as few as nine intermediate compositions are sufficient to characterize the diffusional profile between albite and anorthite. Hence this approach is very efficient, and can be used with little effort. A subsequent chapter reports the results of reactive fluid transport modeling designed to constrain the hydrothermal alteration of Paleoproterozoic sediments of the Southern Lake Superior region. Field observations reveal that quartz-pyrophyllite (or kaolinite) bearing assemblages have been transformed into muscovite-pyrophyllite-diaspore bearing assemblages due to action of fluids migrating along permeable flow channels. Fluid-rock interaction modeling with an initial qtz-prl assemblage and a K-rich fluid simulates the formation of observed mineralogical transformation. The bulk composition of the system evolves from an SiO2-rich one to an Al2O3+K2O-rich one. Simulations show that the fluid flow was up-temperature (e.g. recharge) and that fluid was K-rich. Pseudo compound approach to include solid solutions in reactive transport models was tested in modeling hydrothermal alteration of Icelandic basalts. Solid solutions of chlorites, amphiboles and plagioclase were included as the secondary mineral phases. Saline and fresh water compositions of geothermal fluids were used to investigate the effect of salinity on alteration. Fluid-rock interaction simulations produce the observed mineral transformations. They show that roughly the same alteration minerals are formed due to reactions with both types of fluid which is in agreement with the field observations. A final application is directed towards the remediation of nitrate rich groundwaters. Removal of excess nitrate from groundwater by pyrite oxidation was modeled using the reactive fluid transport algorithm. Model results show that, when a pyrite-bearing, permeable zone is placed in the flow path, nitrate concentration in infiltrating water can be significantly lowered, in agreement with proposals from the literature. This is due to nitrogen reduction. Several simulations investigate the efficiency of systems with different mineral reactive surface areas, reactive barrier zone widths, and flow rates to identify the optimum setup.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.
Resumo:
A study of maar-diatreme volcanoes has been perfomed by inversion of gravity and magnetic data. The geophysical inverse problem has been solved by means of the damped nonlinear least-squares method. To ensure stability and convergence of the solution of the inverse problem, a mathematical tool, consisting in data weighting and model scaling, has been worked out. Theoretical gravity and magnetic modeling of maar-diatreme volcanoes has been conducted in order to get information, which is used for a simple rough qualitative and/or quantitative interpretation. The information also serves as a priori information to design models for the inversion and/or to assist the interpretation of inversion results. The results of theoretical modeling have been used to roughly estimate the heights and the dip angles of the walls of eight Eifel maar-diatremes — each taken as a whole. Inversemodeling has been conducted for the Schönfeld Maar (magnetics) and the Hausten-Morswiesen Maar (gravity and magnetics). The geometrical parameters of these maars, as well as the density and magnetic properties of the rocks filling them, have been estimated. For a reliable interpretation of the inversion results, beside the knowledge from theoretical modeling, it was resorted to other tools such like field transformations and spectral analysis for complementary information. Geologic models, based on thesynthesis of the respective interpretation results, are presented for the two maars mentioned above. The results gave more insight into the genesis, physics and posteruptive development of the maar-diatreme volcanoes. A classification of the maar-diatreme volcanoes into three main types has been elaborated. Relatively high magnetic anomalies are indicative of scoria cones embeded within maar-diatremes if they are not caused by a strong remanent component of the magnetization. Smaller (weaker) secondary gravity and magnetic anomalies on the background of the main anomaly of a maar-diatreme — especially in the boundary areas — are indicative for subsidence processes, which probably occurred in the late sedimentation phase of the posteruptive development. Contrary to postulates referring to kimberlite pipes, there exists no generalized systematics between diameter and height nor between geophysical anomaly and the dimensions of the maar-diatreme volcanoes. Although both maar-diatreme volcanoes and kimberlite pipes are products of phreatomagmatism, they probably formed in different thermodynamic and hydrogeological environments. In the case of kimberlite pipes, large amounts of magma and groundwater, certainly supplied by deep and large reservoirs, interacted under high pressure and temperature conditions. This led to a long period phreatomagmatic process and hence to the formation of large structures. Concerning the maar-diatreme and tuff-ring-diatreme volcanoes, the phreatomagmatic process takes place due to an interaction between magma from small and shallow magma chambers (probably segregated magmas) and small amounts of near-surface groundwater under low pressure and temperature conditions. This leads to shorter time eruptions and consequently to structures of smaller size in comparison with kimberlite pipes. Nevertheless, the results show that the diameter to height ratio for 50% of the studied maar-diatremes is around 1, whereby the dip angle of the diatreme walls is similar to that of the kimberlite pipes and lies between 70 and 85°. Note that these numerical characteristics, especially the dip angle, hold for the maars the diatremes of which — estimated by modeling — have the shape of a truncated cone. This indicates that the diatreme can not be completely resolved by inversion.
Resumo:
In this thesis I treat various biophysical questions arising in the context of complexed / ”protein-packed” DNA and DNA in confined geometries (like in viruses or toroidal DNA condensates). Using diverse theoretical methods I consider the statistical mechanics as well as the dynamics of DNA under these conditions. In the first part of the thesis (chapter 2) I derive for the first time the single molecule ”equation of state”, i.e. the force-extension relation of a looped DNA (Eq. 2.94) by using the path integral formalism. Generalizing these results I show that the presence of elastic substructures like loops or deflections caused by anchoring boundary conditions (e.g. at the AFM tip or the mica substrate) gives rise to a significant renormalization of the apparent persistence length as extracted from single molecule experiments (Eqs. 2.39 and 2.98). As I show the experimentally observed apparent persistence length reduction by a factor of 10 or more is naturally explained by this theory. In chapter 3 I theoretically consider the thermal motion of nucleosomes along a DNA template. After an extensive analysis of available experimental data and theoretical modelling of two possible mechanisms I conclude that the ”corkscrew-motion” mechanism most consistently explains this biologically important process. In chapter 4 I demonstrate that DNA-spools (architectures in which DNA circumferentially winds on a cylindrical surface, or onto itself) show a remarkable ”kinetic inertness” that protects them from tension-induced disruption on experimentally and biologically relevant timescales (cf. Fig. 4.1 and Eq. 4.18). I show that the underlying model establishes a connection between the seemingly unrelated and previously unexplained force peaks in single molecule nucleosome and DNA-toroid stretching experiments. Finally in chapter 5 I show that toroidally confined DNA (found in viruses, DNAcondensates or sperm chromatin) undergoes a transition to a twisted, highly entangled state provided that the aspect ratio of the underlying torus crosses a certain critical value (cf. Eq. 5.6 and the phase diagram in Fig. 5.4). The presented mechanism could rationalize several experimental mysteries, ranging from entangled and supercoiled toroids released from virus capsids to the unexpectedly short cholesteric pitch in the (toroidaly wound) sperm chromatin. I propose that the ”topological encapsulation” resulting from our model may have some practical implications for the gene-therapeutic DNA delivery process.
Resumo:
My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.
Resumo:
Arthropodenhämocyanine und Molluskenhämocyanine, die extrazellulären Atmungsproteine der Arthropoden und Mollusken, unterscheiden sich grundsätzlich im Aufbau, besitzen aber ähnliche aktive Zentren, welche in ihrer oxydierten Form für die Blaufärbung der Hämocyanine verantwortlich sind. Sauerstoff wird im Bindungszentrum zwischen zwei, von sechs Histidinen ligandierten, Kupfer(I)Ionen gebunden. Arthropodenhämocyanine bauen sich artspezifisch aus 1, 2, 4, 6, oder 8 Hexameren mit D3-Symmetrie auf. Die Untereinheiten von je ca. 75 kDa falten sich in drei Domänen unterschiedlicher Funktionen. Der komplexe, hierarchische Zusammenbau der Arthropodenhämocyanine hängt von der Heterogenität der Untereinheiten ab. Die 7 verschieden Sequenzen des 4x6-Hämocyanins von Eurypelma californicum (EcHc) sind biochemisch in der Quartärstruktur lokalisiert. Bislang fehlte noch ein unabhängig erstelltes 3D-Modell der geometrischen Gesamtstruktur welche die hexamere und monomere Topographie eindeutig zeigt. Dessen Erstellung war Gegenstand dieser Arbeit, in Verbindung mit der Zielsetzung, die 3D-Rekonstruktion in den beiden extremen physiologischen Zuständen, mit und ohne gebundenen Sauerstoff, zu erzeugen. Dazu wurden in einer eigens entwickelten Atmosphären-Präparationskammer die Proteine in Lösung schockgefrorenen und mittels Cryo-3D-Elektronenmikroskopie gemessen. Aus den daraus gewonnen Projektionsbildern ließen sich mit der ”Single Particle Analyse“ die 3D-Informationen zurückberechnen. Die 3D-Rekonstruktionen wurden mit der publizierten Röntgenkristallstruktur des hexameren Referenz-Hämocyanins der Languste Panulirus interruptus verifiziert. Die Rekonstruktionen erlaubten die eindeutige Messung diverser in der Literatur diskutierter Parameter der Architektur des 4x6-EcHc und darüber hinaus weiterer geometrischer Parameter, welche hier erstmals veröffentlicht werden. SAXS-Daten sagen extreme Translationen und Rotationen von Teilquartärstrukturen zwischen oxy- und deoxy-EcHc voraus, was von den 3D-Rekonstruktionen der beiden Zustände nicht bestätigt werden konnte: Die 16 Å Rekonstruktion der Deoxyform weicht geometrisch nicht von der 21 Å Rekonstruktion der Oxyform ab. Die Einpassung der publizierten Röntgenstruktur der Untereinheit II des Hämocyanin des Pfeilschwanzkrebses Limulus polyphemus in die Rekonstruktionen unterstützt eine auf der hexameren Hierarchieebene lokalisierte Dynamik der Oxygenierung. Mittels Einpassung modellierter molekularer Strukturen der EcHc-Sequenzen konnte eine erste Vermutung zur Lokalisation der beiden zentralen Linker-Untereinheiten b und c des 4x6-Moleküls gemacht werden: Demnach würde Untereinheit b in den exponierten Hexameren des Moleküls liegen. Aussagen über die Quartärstrukturbindungen auf molekularer Ebene aufgrund der Einpassung modellierter molekularer Daten in die Rekonstruktionen sind als spekulativ einzustufen: a) Die Auflösung der Rekonstruktion ist verbesserungswürdig. b) Es gibt keine adäquate Vorlage für eine verlässliche Strukturvorhersage; die verschiedenen EcHc-Sequenzen liegen nur als Modellierung vor. c) Es wäre eine flexible Einpassung notwendig, um Ungenauigkeiten in den modellierten Strukturen durch Sekundärstrukturanpassung zu minimieren.
Resumo:
Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosensoren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen und Oberflächen zu verstehen, vorherzusagen und zu optimieren. Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Untersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt. Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind, bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Systeme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den verschiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simulationen alternierender Skalen erreicht. Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion des Benzols an Metalloberflächen in wässriger Umgebung studiert. Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein- Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und Oberfläche vorauszusagen.
Resumo:
In the present thesis, the geochemistry, petrology and geochronology of ophiolite complexes from central northern Greece were studied in detail in order to gain insights on the petrogenetic pathways and geodynamic processes that lead to their formation and evolution. The major- and trace-element content of minerals and whole rocks from all four ophiolite complexes was determined using high-precision analytical equipment. These results were then coupled with Nd and Sr isotopic measurements. In order to precisely place the evolution of these ophiolites in time, U-Pb geochronology on zircons was conducted using a SHRIMP-II. The data obtained suggest that the ophiolites studied invariably show typical characteristics of subduction-zone magmatism (e.g. negative Nb anomalies, Th enrichment). In N-MORB-normalised multielement profiles the high field-strength elements display patterns that vary from depleted to N-MORB-like. Chondrite-normalised rare-earth element (REE) profiles show flat heavy-REE patterns suggesting a shallow regime of source melting for all the ophiolites, well within the stability field of spinel lherzolite. The majority of the samples have light-REE depleted patterns. 87Sr/86Sr isotopic ratios range from 0.703184 to 0.715853 and are in cases influenced by alteration. The εNd values are positive (the majority of the mafic samples is typically 7.1-3.1) but lower than N-MORB and depleted mantle. With the exception of the Thessaloniki ophiolite that has uniform island-arc tholeiitic chemical characteristics, the rest of the ophiolites show dual chemistry consisting of rocks with minor subduction-zone characteristics that resemble chemically back-arc basin basalts (BABB) and rocks with more pronounced subduction-zone characteristics. Tectonomagmatic discrimination schemes classify the samples as island-arc tholeiites and back-arc basin basalts or N-MORB. Melting modelling carried out to evaluate source properties and degree of melting verifies the dual nature of the ophiolites. The samples that resemble back-arc basin basalts require very small degrees of melting (<10%) of fertile sources, whereas the rest of the samples require higher degrees (25-15%) of melting. As deduced from the present geochemical and petrological investigation, the ophiolites from Guevguely, Oraeokastro, Thessaloniki, and Chalkidiki represent relics of supra-subduction zone crust that formed in succeeding stages of island-arc rifting and back-arc spreading as well as in a fore arc setting. The geochronological results have provided precise determination of the timing of formation of these complexes. The age of the Guevguely ophiolite has been determined as 167±1.2 Ma, that of Thessaloniki as 169±1.4 Ma, that of Kassandra as 167±2.2 Ma and that of Sithonia as 160±1.2 Ma.
Resumo:
This PhD thesis concerns geochemical constraints on recycling and partial melting of Archean continental crust. A natural example of such processes was found in the Iisalmi area of Central Finland. The rocks from this area are Middle to Late Archean in age and experienced metamorphism and partial melting between 2.7-2.63 Ga. The work is based on extensive field work. It is furthermore founded on bulk rock geochemical data as well as in-situ analyses of minerals. All geochemical data were obtained at the Institute of Geosciences, University of Mainz using X-ray fluorescence, solution ICP-MS and laser ablation-ICP-MS for bulk rock geochemical analyses. Mineral analyses were accomplished by electron microprobe and laser ablation ICP-MS. Fluid inclusions were studied by microscope on a heating-freezing-stage at the Geoscience Center, University Göttingen. Part I focuses on the development of a new analytical method for bulk rock trace element determination by laser ablation-ICP-MS using homogeneous glasses fused from rock powder on an Iridium strip heater. This method is applicable for mafic rock samples whose melts have low viscosities and homogenize quickly at temperatures of ~1200°C. Highly viscous melts of felsic samples prevent melting and homogenization at comparable temperatures. Fusion of felsic samples can be enabled by addition of MgO to the rock powder and adjustment of melting temperature and melting duration to the rock composition. Advantages of the fusion method are low detection limits compared to XRF analyses and avoidance of wet-chemical processing and use of strong acids as in solution ICP-MS as well as smaller sample volumes compared to the other methods. Part II of the thesis uses bulk rock geochemical data and results from fluid inclusion studies for discrimination of melting processes observed in different rock types. Fluid inclusion studies demonstrate a major change in fluid composition from CO2-dominated fluids in granulites to aqueous fluids in TTG gneisses and amphibolites. Partial melts were generated in the dry, CO2-rich environment by dehydration melting reactions of amphibole which in addition to tonalitic melts produced the anhydrous mineral assemblages of granulites (grt + cpx + pl ± amph or opx + cpx + pl + amph). Trace element modeling showed that mafic granulites are residues of 10-30 % melt extraction from amphibolitic precursor rocks. The maximum degree of melting in intermediate granulites was ~10 % as inferred from modal abundances of amphibole, clinopyroxene and orthopyroxene. Carbonic inclusions are absent in upper-amphibolite facies migmatites whereas aqueous inclusion with up to 20 wt% NaCl are abundant. This suggests that melting within TTG gneisses and amphibolites took place in the presence of an aqueous fluid phase that enabled melting at the wet solidus at temperatures of 700-750°C. The strong disruption of pre-metamorphic structures in some outcrops suggests that the maximum amount of melt in TTG gneisses was ~25 vol%. The presence of leucosomes in all rock types is taken as the principle evidence for melt formation. However, mineralogical appearance as well as major and trace element composition of many leucosomes imply that leucosomes seldom represent frozen in-situ melts. They are better considered as remnants of the melt channel network, e.g. ways on which melts escaped from the system. Part III of the thesis describes how analyses of minerals from a specific rock type (granulite) can be used to determine partition coefficients between different minerals and between minerals and melt suitable for lower crustal conditions. The trace element analyses by laser ablation-ICP-MS show coherent distribution among the principal mineral phases independent of rock composition. REE contents in amphibole are about 3 times higher than REE contents in clinopyroxene from the same sample. This consistency has to be taken into consideration in models of lower crustal melting where amphibole is replaced by clinopyroxene in the course of melting. A lack of equilibrium is observed between matrix clinopyroxene / amphibole and garnet porphyroblasts which suggests a late stage growth of garnet and slow diffusion and equilibration of the REE during metamorphism. The data provide a first set of distribution coefficients of the transition metals (Sc, V, Cr, Ni) in the lower crust. In addition, analyses of ilmenite and apatite demonstrate the strong influence of accessory phases on trace element distribution. Apatite contains high amounts of REE and Sr while ilmenite incorporates about 20-30 times higher amounts of Nb and Ta than amphibole. Furthermore, trace element mineral analyses provide evidence for magmatic processes such as melt depletion, melt segregation, accumulation and fractionation as well as metasomatism having operated in this high-grade anatectic area.
Resumo:
In dieser Arbeit werden Quantum-Hydrodynamische (QHD) Modelle betrachtet, die ihren Einsatz besonders in der Modellierung von Halbleiterbauteilen finden. Das QHD Modell besteht aus den Erhaltungsgleichungen für die Teilchendichte, das Momentum und die Energiedichte, inklusive der Quanten-Korrekturen durch das Bohmsche Potential. Zu Beginn wird eine Übersicht über die bekannten Ergebnisse der QHD Modelle unter Vernachlässigung von Kollisionseffekten gegeben, die aus einem Schrödinger-System für den gemischten-Zustand oder aus der Wigner-Gleichung hergeleitet werden können. Nach der Reformulierung der eindimensionalen QHD Gleichungen mit linearem Potential als stationäre Schrödinger-Gleichung werden die semianalytischen Fassungen der QHD Gleichungen für die Gleichspannungs-Kurve betrachtet. Weiterhin werden die viskosen Stabilisierungen des QHD Modells berücksichtigt, sowie die von Gardner vorgeschlagene numerische Viskosität für das {sf upwind} Finite-Differenzen Schema berechnet. Im Weiteren wird das viskose QHD Modell aus der Wigner-Gleichung mit Fokker-Planck Kollisions-Operator hergeleitet. Dieses Modell enthält die physikalische Viskosität, die durch den Kollision-Operator eingeführt wird. Die Existenz der Lösungen (mit strikt positiver Teilchendichte) für das isotherme, stationäre, eindimensionale, viskose Modell für allgemeine Daten und nichthomogene Randbedingungen wird gezeigt. Die dafür notwendigen Abschätzungen hängen von der Viskosität ab und erlauben daher den Grenzübergang zum nicht-viskosen Fall nicht. Numerische Simulationen der Resonanz-Tunneldiode modelliert mit dem nichtisothermen, stationären, eindimensionalen, viskosen QHD Modell zeigen den Einfluss der Viskosität auf die Lösung. Unter Verwendung des von Degond und Ringhofer entwickelten Quanten-Entropie-Minimierungs-Verfahren werden die allgemeinen QHD-Gleichungen aus der Wigner-Boltzmann-Gleichung mit dem BGK-Kollisions-Operator hergeleitet. Die Herleitung basiert auf der vorsichtige Entwicklung des Quanten-Maxwellians in Potenzen der skalierten Plankschen Konstante. Das so erhaltene Modell enthält auch vertex-Terme und dispersive Terme für die Geschwindigkeit. Dadurch bleibt die Gleichspannungs-Kurve für die Resonanz-Tunneldiode unter Verwendung des allgemeinen QHD Modells in einer Dimension numerisch erhalten. Die Ergebnisse zeigen, dass der dispersive Geschwindigkeits-Term die Lösung des Systems stabilisiert.
Resumo:
Die Messung der Stärke von Empfindungen hat in der Psychologie eine lange Tradition, die bis in die Zeit der Entstehung der Psychologie als eine eigenständige Wissenschaft gegen Ende des 19. Jahrhunderts zurückreicht. Gustav Theodor Fechner verband die Beobachtung Webers der Konstanz des Koeffizienten des eben merklichen Unterschieds zu der Vergleichsintensität (sog. "Weber-Quotient") mit der Annahme einer sensorischen Schwelle, und entwickelte daraus erstmals eine Skala für die Stärke von Empfindungen. Die Fechner-Skala verwendet die Anzahl sukzessiver Schwellenschritte als natürliche, psychologische Einheit. Die Stärke einer Empfindung für eine gegebene Reizintensität wird ausgedrückt als die Anzahl von Schwellenschritten, die man gehen muss, um von keiner Empfindung bis zur in Frage stehenden Empfindung zu gelangen. Die Funktion, die den Zusammenhang von Reizintensität und der Anzahl nötiger Schwellenschritte beschreibt, ist stets logarithmisch und über sukzessive Schwellenmessungen für Reize aus den verschiedensten Sinnesmodalitäten bestimmbar. Derart sich ergebende Skalierungen heißen "indirekt", weil die in Frage stehende Reizintensität selbst nicht von der Urteilsperson bewertet wird. Intensitäten sind vom Urteiler nur mit anderen Intensitäten in Bezug auf ein "stärker" oder "schwächer", also ordinal, zu vergleichen. Indirekte Skalierungsmethoden eignen sich insbesondere, wenn der Reizeindruck flüchtig und von der absoluten Stärke her schwer durch den Urteiler zu quantifizieren ist. Ein typisches Beispiel hierfür ist die Auffälligkeit (Salienz) von visuellen Objekten, die in zufällig wechselnde Hintergründe eingebettet sind und dem Betrachter nur als ein rasches raumzeitliches Aufblitzen präsentiert werden. Die Stärke des Unterschieds in Merkmalen wie Helligkeit, Farbe, Orientierung, Schattierung, Form, Krümmung, oder Bewegung bestimmt das Ausmaß der Salienz von Objekten. Obschon eine Fülle von Arbeiten existiert zu der Frage, welche Merkmale und deren Kombinationen ohne Wissen des Ortes ihrer Präsentation automatisch starke Salienz ("Pop-Out") erzeugen, existieren bislang keine systematischen Versuche, die Salienz von Merkmalen für einen weiten Bereich von Merkmalsunterschieden zu erfassen und vergleichbar zu machen. Indirekte Skalierungen liegen vor für die Merkmale Kontrast (Legge und Foley, 1980) und Orientierung (Motoyoshi und Nishida, 2001). Ein Vergleich der Salienz über mehrere Merkmale und der Nachweis, dass die Salienz eine eigene, von der Merkmalsdimension unabhängige sensorische Qualität ist, steht aber bislang aus. In der vorliegenden Arbeit wird gezeigt, dass der Unterschied von Objekten zur einbettenden Umgebung hinsichtlich visueller Merkmale zu Salienz führt und diese Salienz unabhängig von dem sie erzeugenden Merkmal der Stärke nach skalierbar ist. Es wird ferner gezeigt, dass die Einheiten der für zwei Merkmale erhobenen indirekten Skalierungsfunktionen in einem absoluten Sinne gleich sind, solange sichergestellt ist, dass (i) keine alternativen Hinweisreize existieren und nur der reine Merkmalsunterschied von Objekt und Umgebung bewertet wird und (ii) das sensorische Rauschen in den aktivierten Merkmalskanälen für beide Merkmale gleich ist. Für diesen Aufweis wurden exemplarisch die Merkmale Orientierung und Ortsfrequenz ausgewählt und die Salienz ihrer Merkmalskontraste über Naka-Rushton-Funktionen, gewonnen aus den zugrundeliegenden Salienz-Inkrementschwellenmessungen, indirekt skaliert. Für das Merkmal Ortsfrequenz liegt hiermit erstmals eine indirekte Skalierung vor. Hierfür musste eine spezielle Messtechnik entwickelt werden, die die Bewertung reiner Ortsfrequenzunterschiede, frei von konfundierenden absoluten Ausprägungen der Ortsfrequenzen, sicherstellt. Die Methode ist in Kapitel 7 dargestellt. Experimente, die die konfundierende Wirkung absoluter Merkmalsausprägungen auf die Salienzmessung demonstrieren, sind in Kapitel 6 dargestellt. In Kapitel 8 findet sich ein empirischer Abgleich der Ergebnisse von Inkrement- und Dekrementschwellenmessungen, eine Messtechnik, die zur Erfassung von Unterschiedsschwellen im Extrembereich der Orientierungsunterschiede von 90° nötig ist. Kapitel 9 enthält den empirischen Aufweis der Transitivität der Gleichheitsrelation für Salienzmessungen von Orientierung und Ortsfrequenz durch Abgleich mit einem dritten Merkmal und erbringt damit den Beleg der merkmalsunabhängigen Erfassung von Auffälligkeit über die indirekte Skalierungsmethodik. Ferner wird dort die Wirksamkeit der Grundsalienz von Mustern, gegeben über externes Rauschen in den Merkmalen (sog. "Merkmalsjitter") für die Verschiebung des Nullpunktes der Skalierungsfunktion aufgezeigt. Im letzten Experiment (Kapitel 10) wird dann die Skalierung von Orientierung und Ortsfrequenz bei gleicher Grundsalienz der Muster verglichen und gezeigt, dass beide Skalen in einem absoluten Sinne gleiche Einheiten aufweisen (also gleiche Skalenzahlen gleiche sensorische Auffälligkeiten anzeigen, obwohl sie von verschiedenen Merkmalen stammen), wenn der Effekt des sensorischen Rauschens, der im Merkmal Orientierung nicht über die verschiedenen Schwellenschritte konstant ist, kompensiert wird. Die Inkonstanz des Effektes des sensorischen Rauschens im Merkmal Orientierung wird über die Veränderung der Steigung der psychometrischen Präferenzfunktion für die Vergleichsurteile der Orientierungssalienz für eine fest vorgegebene Ortsfrequenzsalienz greifbar, und der Effekt der Steigungsveränderung kompensiert exakt die Nichtlinearität in der für beide Merkmale erhobenen Salienz-Matchingfunktion. Im letzten Kapitel wird ein Ausblick auf eine mögliche Modellierung der Salienzfunktionen über klassische Multikanal-Feedforwardmodelle gegeben. In den ersten fünf Kapiteln sind einführend die Gebiete der indirekten Skalierung, der Merkmalssalienz und der Texturtrennung im menschlichen visuellen System dargestellt.
Resumo:
Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, we have chosen to concentrate on this category, which includes cables, hoses and wiring harnesses. In this thesis, we present a system for simulating one dimensional flexible parts such as cables or hoses. The modeling of bending and torsion follows the Cosserat model. For this purpose we use a generalized spring-mass system and describe its configuration by a carefully chosen set of coordinates. Gravity and contact forces as well as the forces responsible for length conservation are expressed in Cartesian coordinates. But bending and torsion effects can be dealt with more effectively by using quaternions to represent the orientation of the segments joining two neighboring mass points. This augmented system allows an easy formulation of all interactions with the best appropriate coordinate type and yields a strongly banded Hessian matrix. An energy minimizing process accounts for a solution exempt from the oscillations that are typical of spring-mass systems. The use of integral forces, similar to an integral controller, allows to enforce exactly the constraints. The whole system is numerically stable and can be solved at interactive frame rates. It is integrated in the DaimlerChrysler in-house Virtual Reality Software veo for use in applications such as cable routing and assembly simulation and has been well received by users. Parts of this work have been published at the ACM Solid and Physical Modeling Conference 2006 and have been selected for the special issue of the Computer-Aided-Design Journal to the conference.
Resumo:
In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.
Resumo:
In this thesis foliation boudinage and related structures have been studied based on field observations and numerical modeling. Foliation boudinage occurs in foliated rocks independent of lithology contrast. The developing structures are called ‘Foliation boudinage structures (FBSs)’ and show evidence for both ductile and brittle deformation. They are recognized in rocks by perturbations in monotonous foliation adjacent to a central discontinuity, mostly filled with vein material. Foliation boudinage structures have been studied in the Çine Massif in SW-Turkey and the Furka Pass-Urseren Zone in central Switzerland. Four common types have been distinguished in the field, named after vein geometries in their boudin necks in sections normal to the boudin axis: lozenge-, crescent-, X- and double crescent- type FBSs. Lozengetype FBSs are symmetric and characterized by lozenge-shaped veins in their boudin neck with two cusps facing opposite sides. A symmetrical pair of flanking folds occurs on the two sides of the vein. Crescent-type FBSs are asymmetric with a single smoothly curved vein in the boudin neck, with vein contacts facing to one side. X- and double crescent- type FBSs are asymmetric. The geometry of the neck veins resembles that of cuspate-lobate structures. The geometry of flanking structures is related to the shape of the veins. The veins are mostly filled with massive quartz in large single crystals, commonly associated with tourmaline, feldspar and biotite and in some cases with chlorite. The dominance of large facetted single quartz crystals and spherulitic chlorite in the veins suggest that the minerals grew into open fluidfilled space. FLAC experiments show that fracture propagation during ductile deformation strongly influences the geometry of developing veins. The cusps of the veins are better developed in the case of propagating fractures. The shape of the boudin neck veins in foliation boudinage depends on the initial orientation and shape of the fracture, the propagation behaviour of the fracture, the geometry of bulk flow, and the stage at which mineral filling takes place. A two dimensional discrete element model was used to study the progressive development of foliation boudinage structures and the behavior of visco-elastic material deformed under pure shear conditions. Discrete elements are defined by particles that are connected by visco-elastic springs. Springs can break. A number of simulations was Abstract vii performed to investigate the effect of material properties (Young’s modulus, viscosity and breaking strength) and anisotropy on the developing structures. The models show the development of boudinage in single layers, multilayers and in anisotropic materials with random mica distribution. During progressive deformation different types of fractures develop from mode I, mode II to the combination of both. Voids develop along extension fractures, at intersections of conjugate shear fractures and in small pull-apart structures along shear fractures. These patterns look similar to the natural examples. Fractures are more localized in the models where the elastic constants are low and the competence contrast is high between the layers. They propagate through layers where the constants are high and the competence contrast is relatively low. Flow localize around these fractures and voids. The patterns similar to symmetric boudinage structures and extensional neck veins (e.g. lozenge type) more commonly develop in the models with lower elastic constants and anisotropy. The patterns similar to asymmetric foliation boudinage structures (e.g. X-type) develop associated with shear fractures in the models where elastic constants and anisotropy of the materials are relatively high. In these models boudin neck veins form commonly at pull-aparts along the shear fractures and at the intersection of fractures.