907 resultados para Minimum bias
Resumo:
It is well known that Alamouti code and, in general, Space-Time Block Codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbolby-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). In this paper, we obtain SSD codes with unitary weight matrices (but not CON) from matrix representations of Clifford algebras. Moreover, we derive an upper bound on the rate of SSD codes with unitary weight matrices and show that our codes meet this bound. Also, we present conditions on the signal sets which ensure full-diversity and give expressions for the coding gain.
Resumo:
Space-Time Block Codes (STBCs) from Complex Orthogonal Designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD); however, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). The class of CIODs have non-unitary weight matrices when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas the other class of SSD codes including CODs have unitary weight matrices. In this paper, we construct a large class of SSD codes with nonunitary weight matrices. Also, we show that the class of CIODs is a special class of our construction.
Resumo:
We present two new support vector approaches for ordinal regression. These approaches find the concentric spheres with minimum volume that contain most of the training samples. Both approaches guarantee that the radii of the spheres are properly ordered at the optimal solution. The size of the optimization problem is linear in the number of training samples. The popular SMO algorithm is adapted to solve the resulting optimization problem. Numerical experiments on some real-world data sets verify the usefulness of our approaches for data mining.
Resumo:
We have compared the spectral aerosol optical depth (AOD) and aerosol fine mode fraction (AFMF) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) with those of Aerosol Robotic Network (AERONET) at Kanpur (26.45N, 80.35E), northern India for the pre-monsoon season (March to June, 2001-2005). We found that MODIS systematically overestimates AOD during pre-monsoon season (known to be influenced by dust transport from north-west of India). The errors in AOD were correlated with the MODIS top-of-atmosphere apparent surface reflectance in 2.1 mu m channel (rho*(2.1)). MODIS aerosol algorithm uses p*(2.1) to derive the surface reflectance in visible channels (rho(0.47), rho(0.66)) using an empirical mid IR-visible correlation (rho(0.47) = rho(2.1)/4, rho(0.66) = rho(2.1)/2). The large uncertainty in estimating surface reflectance in visible channels (Delta rho(0.66)+/- 0.04, Delta rho(0.47)+/- 0.02) at higher values of p*(2.1) (p*(2.1) > 0.18) leads to higher aerosol contribution in the total reflected radiance at top-of atmosphere to compensate for the reduced surface reflectance in visible channels and thus leads to overestimation of AOD. This was also reflected in the very low values of AFMF during pre-monsoon whose accuracy depends on the aerosol path radiance in 0.47 and 0.66 mu m channels and aerosol models. The errors in AOD were also high in the scattering angle range 110 degrees-140 degrees, where the effect of dust non-spherity on its optical properties is significant. The direct measurements of spectral surface reflectance are required over the Indo-Gangetic basin in order to validate the mid IR-visible relationship. MODIS aerosol models should also be modified to incorporate the effect of non-spherity of dust aerosols.
Resumo:
A modified linear prediction (MLP) method is proposed in which the reference sensor is optimally located on the extended line of the array. The criterion of optimality is the minimization of the prediction error power, where the prediction error is defined as the difference between the reference sensor and the weighted array outputs. It is shown that the L2-norm of the least-squares array weights attains a minimum value for the optimum spacing of the reference sensor, subject to some soft constraint on signal-to-noise ratio (SNR). How this minimum norm property can be used for finding the optimum spacing of the reference sensor is described. The performance of the MLP method is studied and compared with that of the linear prediction (LP) method using resolution, detection bias, and variance as the performance measures. The study reveals that the MLP method performs much better than the LP technique.
Resumo:
In this work, using self-consistent tight-binding calculations. for the first time, we show that a direct to indirect band gap transition is possible in an armchair graphene nanoribbon by the application of an external bias along the width of the ribbon, opening up the possibility of new device applications. With the help of the Dirac equation, we qualitatively explain this band gap transition using the asymmetry in the spatial distribution of the perturbation potential produced inside the nanoribbon by the external bias. This is followed by the verification of the band gap trends with a numerical technique using Magnus expansion of matrix exponentials. Finally, we show that the carrier effective masses possess tunable sharp characters in the vicinity of the band gap transition points.
Resumo:
Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to a low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.
Resumo:
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csiszar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner bases method to compute an implicit representation of minimum KL-divergence models.
Resumo:
Caste is usually thought to be determined entirely in the adult stage in most primitively eusocial wasps and bees. A pre-imaginal caste bias has however been recently discovered in the primitively eusocial waspRopalidia marginata. This study also suggested that reigning queens and possibly other adults may influence the production of new queens and implied at least partial support to the parental manipulation or sub-fertility hypothesis for the evolution of insect sociality. The interest of these results prompted an attempt at their reconfirmation. Complete reconfirmation has now been obtained using data from an independent experiment and two additional methods of data analysis. We therefore conclude that caste is at least partly determined prior to eclosion in the primitively eusocial waspRopalidia marginata which lacks morphological differentiation between egg-layers and non-egg-layers.
Resumo:
Numerous reports from several parts of the world have confirmed that on calm clear nights a minimum in air temperature can occur just above ground, at heights of the order of $\frac{1}{2}$ m or less. This phenomenon, first observed by Ramdas & Atmanathan (1932), carries the associated paradox of an apparently unstable layer that sustains itself for several hours, and has not so far been satisfactorily explained. We formulate here a theory that considers energy balance between radiation, conduction and free or forced convection in humid air, with surface temperature, humidity and wind incorporated into an appropriate mathematical model as parameters. A complete numerical solution of the coupled air-soil problem is used to validate an approach that specifies the surface temperature boundary condition through a cooling rate parameter. Utilizing a flux-emissivity scheme for computing radiative transfer, the model is numerically solved for various values of turbulent friction velocity. It is shown that a lifted minimum is predicted by the model for values of ground emissivity not too close to unity, and for sufficiently low surface cooling rates and eddy transport. Agreement with observation for reasonable values of the parameters is demonstrated. A heuristic argument is offered to show that radiation substantially increases the critical Rayleigh number for convection, thus circumventing or weakening Rayleigh-Benard instability. The model highlights the key role played by two parameters generally ignored in explanations of the phenomenon, namely surface emissivity and soil thermal conductivity, and shows that it is unnecessary to invoke the presence of such particulate constituents as haze to produce a lifted minimum.
Resumo:
Microbes in natural and artificial environments as well as in the human body are a key part of the functional properties of these complex systems. The presence or absence of certain microbial taxa is a correlate of functional status like risk of disease or course of metabolic processes of a microbial community. As microbes are highly diverse and mostly notcultivable, molecular markers like gene sequences are a potential basis for detection and identification of key types. The goal of this thesis was to study molecular methods for identification of microbial DNA in order to develop a tool for analysis of environmental and clinical DNA samples. Particular emphasis was placed on specificity of detection which is a major challenge when analyzing complex microbial communities. The approach taken in this study was the application and optimization of enzymatic ligation of DNA probes coupled with microarray read-out for high-throughput microbial profiling. The results show that fungal phylotypes and human papillomavirus genotypes could be accurately identified from pools of PCR amplicons generated from purified sample DNA. Approximately 1 ng/μl of sample DNA was needed for representative PCR amplification as measured by comparisons between clone sequencing and microarray. A minimum of 0,25 amol/μl of PCR amplicons was detectable from amongst 5 ng/μl of background DNA, suggesting that the detection limit of the test comprising of ligation reaction followed by microarray read-out was approximately 0,04%. Detection from sample DNA directly was shown to be feasible with probes forming a circular molecule upon ligation followed by PCR amplification of the probe. In this approach, the minimum detectable relative amount of target genome was found to be 1% of all genomes in the sample as estimated from 454 deep sequencing results. Signal-to-noise of contact printed microarrays could be improved by using an internal microarray hybridization control oligonucleotide probe together with a computational algorithm. The algorithm was based on identification of a bias in the microarray data and correction of the bias as shown by simulated and real data. The results further suggest semiquantitative detection to be possible by ligation detection, allowing estimation of target abundance in a sample. However, in practise, comprehensive sequence information of full length rRNA genes is needed to support probe design with complex samples. This study shows that DNA microarray has the potential for an accurate microbial diagnostic platform to take advantage of increasing sequence data and to replace traditional, less efficient methods that still dominate routine testing in laboratories. The data suggests that ligation reaction based microarray assay can be optimized to a degree that allows good signal-tonoise and semiquantitative detection.
Resumo:
In this article, a minimum weight design of carbon/epoxy laminates is carried out using genetic algorithms. New failure envelopes have been developed by the combination of two commonly used phenomenological failure criteria, namely Maximum Stress (MS) and Tsai-Wu (TW) are used to obtain the minimum weight of the laminate. These failure envelopes are the most conservative failure envelope (MCFE) and the least conservative failure envelope (LCFE). Uniaxial and biaxial loading conditions are considered for the study and the differences in the optimal weight of the laminate are compared for the MCFE and LCFE. The MCFE can be used for design of critical load-carrying composites, while the LCFE could be used for the design of composite structures where weight reduction is much more important than safety such as unmanned air vehicles.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.