Minimum enclosing spheres formulations for support vector ordinal regression


Autoria(s): Shevade, SK; Chu, Wei
Contribuinte(s)

Clifton, CW

Zhong, N

Liu, JM

Wah, BW

Wu, XD

Data(s)

2006

Resumo

We present two new support vector approaches for ordinal regression. These approaches find the concentric spheres with minimum volume that contain most of the training samples. Both approaches guarantee that the radii of the spheres are properly ordered at the optimal solution. The size of the optimization problem is linear in the number of training samples. The popular SMO algorithm is adapted to solve the resulting optimization problem. Numerical experiments on some real-world data sets verify the usefulness of our approaches for data mining.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/30516/1/04053152.pdf

Shevade, SK and Chu, Wei (2006) Minimum enclosing spheres formulations for support vector ordinal regression. In: 6th IEEE International Conference on Data Mining,, Dec 18-22, 2006, Hong Kong, Peoples R China, pp. 1054-1058.

Publicador

IEEE

Relação

http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Minimum+enclosing+spheres+formulations+for+support+vector+ordinal++regression&x=29&y=16&tag=1

http://eprints.iisc.ernet.in/30516/

Palavras-Chave #Computer Science & Automation (Formerly, School of Automation)
Tipo

Conference Paper

PeerReviewed