973 resultados para Magnetic and electrical properties
Resumo:
Thin films of SrBi4Ti4O15 (SBTi), a prototype of the Bi-layered-ferroelectric oxide family, were obtained by a soft chemical method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional method at 700 degrees C for 2 h. Structural and morphological characterization of the SBTi thin films were investigated by Xray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates, the ferroelectric properties of the films were determined. Remanent polarization P-r and a coercive field E-c values of 5.1 mu C/cm(2) and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 mu C/cm(2) and 85 kv/cm for the film thermally treated in conventional furnace were found. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10(10) switching cycles indicating that SBTi thin films are a promising material for use in non-volatile memories. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The addition of different dopants affects the densification, mean grain size and electrical properties of TiO2-based varistor ceramics. This paper discusses the microstructural and electrical properties of (Ta, Co, Pr) doped TiO2 systems, demonstrating that some of these systems display electrical properties that allow for their use as low voltage varistor. Dopants such as Ta2O5 play a special role in the formation of barriers at the grain boundary and in the nonlinear behavior in TiO2-based systems. The higher values of nonlinear coefficient and breakdown electric field were obtained in the system just doped with Ta2O5 and CoO.
Resumo:
This work describes the preparation and characterization of composite materials obtained by the combination of natural rubber (NR) and carbon black (CB) in different percentages, aiming to improve their mechanical properties, processability, and electrical conductivity, aiming future applications as transducer in pressure sensors. The composites NR/CB were characterized through optical microscopy (OM), DC conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA), and stress-strain test. The electrical conductivity varied between 10(-9) and 10 S m(-1), depending on the percentage of CB in the composite. Furthermore, a linear (and reversible) dependence of the conductivity on the applied pressure between 0 and 1.6 MPa was observed for the sample with containing 80 wt % of NR and 20% of CB. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Undoped and indium-doped Zinc oxide (ZnO) solid films were deposited by the pyrosol process at 450 degrees C on glass substrates From solutions where In/Zn ratio was 2, 5, and 10 at.%. Electrical measurements performed at room temperature show that the addition of indium changes the resistance of the films. The resistivities of doped films are less than non-doped ZnO films by one to two orders of magnitude depending on the dopant concentration in the solution. Preferential orientation of the films with the c-axis perpendicular to the substrate was detected by X-ray diffraction and polarized extended X-ray absorption fine structures measurements at the Zn K edge. This orientation depends on the indium concentration in the starting solution. The most textured films were obtained for solutions where In/Zn ratio was 2 and 5 at.%. When In/Zn = 10 at.%, the films had a nearly random orientation of crystallites. Evidence of the incorporation of indium in the ZnO lattice was obtained from extended X-ray absorption fine structures at the In and Zn K edges. The structural analysis of the least resistive film (Zn/In = 5 at.%) shows that In substitutes Zn in the wurtzite structure. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effect of La2O3 addition on the densification and electrical properties of the (0.9895 - x) SnO2 + 0.01 CoO + 0.0005 Nb2O5 + x La2O5 system, where x = 0.0005 or 0.00075, was considered in this study. The samples were sintered at 1300 degreesC for 2 and 4 h and a single SnO2 phase was identified by X-ray diffraction. Microstructure analysis by scanning electron microscopy showed that the affect of La2O3 addition is to decrease the SnO2 grain size. J versus E curves indicated that the system exhibits a varistor behavior and the effect of La2O3 is to increase both the non-linear coefficient (alpha) and the breakdown voltage (E-2). Considering the Schottky thermionic emission model the potential height and the width were estimated. The addition of small amounts of La2O3 to the basic system increases the potential barrier height and decreases both grain size and potential barrier width. (C) 2001 Kluwer Academic Publishers.
Resumo:
Structural and electrical properties of ZnO varistors were investigated as a function of spinel composition. Six varistor mixtures differing only in chemical composition of spinel, were prepared by mixing separately synthesized constituent phases (DSCP method). Compositions of constituent phases in sintered samples were investigated by changes of lattice parameters of the phases, as well as by EDS analysis of the constituent phases. It was found that compositions of ZnO, intergranular and spinel phases were partially changed during sintering due to redistribution of additives, that was controlled by starting spinel composition and its stability. Electrical characterization showed significant difference in electrical properties of investigated varistors: nonlinearity coefficients ranging from 22 to 55 and leakage currents differing by the order of magnitude. Activation energies of conduction were obtained from ac impedance spectroscopy measurements. Calculated values of activation energies were in the range 0.61-1.0 eV confirming difference in defect structure of ZnO grain boundaries in varistors containing different spinel phases. (C) 2001 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
SrBi2Nb2O9 (SBN) thin films were prepared by the polymeric precursors method and deposited by dip coating onto Pt/Ti/SiO2/Si(100) substrates. The dip-coated films were specular and crack-free and crystallized during firing at 700 degrees C. Microstructure and morphological evaluation were followed by grazing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The films exhibited somewhat porous grain structure with rounded grains of about 100 nm. For the electrical measurements, gold electrodes of 300 mu m in diameter were sputter deposited on the top surface, forming a metal-ferroelectric-metal (MFM) configuration. The remanent polarization (P-r) and coercive field (E-c) were 5.6 mu C/cm(2) and 100 kV/cm, respectively. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Lanthanum-doped Bi4Ti3O12 thin films (BLT) were deposited on Pt/Ti/SiO2/Si substrates using a polymeric precursor solution. The spin-coated films were specular, crack-free and crystalline after annealing at 700 degrees C for 2 h. Crystallinity and morphological evaluation were examined by X ray diffraction (YRD) and atomic force microscopy (AFM). The stability of the formed complex is of extreme importance for the formation of the perovskite phase. Films obtained from acid pH solution present elongated grains around 200 ran in size, whereas films obtained from basic solution present a dense microstructure with spherical grains (100 nm). The dielectric and ferroelectric properties of the BLT films are strongly affected by the solution pH. The hysteresis loops are fully saturated with a remnant polarization and coercive voltage of P-r=20.2 mu C/cm(2) and V-c = 1.35 V and P-r= 15 mu C/cm(2) and V-c = 1.69 V for the films obtained from basic and acid solutions, respectively. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
c-axis oriented Bi3.25La0.75Ti3O12 (BLT) thin films were grown on a RuO2 top electrode deposited on a (100) SiO2/Si substrate by the polymeric precursor method. X-ray diffraction and atomic force microscope investigations indicate that the films exhibit a dense, well crystallized microstructure having random orientations with a rather smooth surface morphology. The electrical properties of preferred oriented Bi3.25La0.75Ti3O12 (BLT) thin films deposited on RuO2 bottom electrode leaded to a large remnant polarization (P-r ) of 17.2 mu C/cm(2) and (V-c ) of 1.8 V, fatigue free characteristics up to 10(10) switching cycles and a current density of 2.2 mu A/cm(2) at 5 V. We found that the polarization loss is insignificant with nine write/read voltages at a waiting time of 10,000 s. Independently of the applied electric field the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s.
Resumo:
The structure and the ionic conduction properties of siloxane-poly(oxypropylene) (PPO) hybrids doped with different potassium salts (KCF3SO3, KI, KClO4 and KNO2) are reported for two polymer molecular weights (300 and 4000 g/mol), labelled PPO300 and PPO4000, respectively. The doping concentration, related to the concentration of the ether type oxygen of the PPO chain, is the same whatever the salt and verifies [O]/[K] = 20. Ionic room temperature conductivity shows the highest value for the KCF3SO3 doped PPO4000 hybrid (4 x 10(-7)Omega(-1).cm(-1)). The structure of these hybrids was investigated by X-ray powder diffraction (XRPD) and X-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge (3607 eV). XRPD results show that the hybrid matrix is always amorphous and the formation of secondary potassium phases is observed for all the samples, except for the KCF3SO3 doped PPO4000 hybrid. EXAFS results evidence a good correlation between the ionic conductivity and the presence of oxygen atoms as first neighbours around potassium.
Resumo:
The effect of LiNbO3 and KNbO3 seeds on the microstructure and dielectric characteristics of PMN ceramic prepared by columbite route have been investigated with the addition of 0, 1, and 2-wt% of seeds. X-ray diffraction, Scanning Electron Microscopy and an impedance analyzer were used to characterize the influence of seeds on physical characteristics and dielectric properties of PMN. LiNbO3 -seeded PMN samples present a significant increase in the amount of perovskite phase. The addition of LiNbO3 seeds in sintered PMN ceramics at 1100degreesC during 4 h causes a decrease in the porosity and the amount of pyrochlore phase. Weight losses during sintering of PMN ceramics are suppressed more significantly for LiNbO3 -seeded PMN. T-m of PMN ceramics changes with seeds concentration. KNbO3 seeds displace T-m to lower temperature whereas LiNbO3 causes its elevation. Dielectric constants of approximately 13,000 at 1 kHz was measured at -5degreesC in PMN ceramics with 1-wt% of LiNbO3 seeds.
Resumo:
We report experiments of electron spin resonance (ESR) of Cu2+ in polycrystalline samples of CaCu3Ti4O12 post-annealed in different atmospheres. After being synthesized by solid state reaction, pellets of CaCu3Ti4O12 were annealed for 24 h at 1000 degrees C under air, Ar or O-2. Our temperature dependent ESR data revealed for all samples nearly temperature independent g value (2.15(1)) and linewidth for T > T-N approximate to 25 K. However, the values of ESR linewidth are strongly affected by the oxygen content in the sample. For instance, argon post-annealed samples show a much larger linewidth than the O-2 or air post-annealed samples. We attribute this broadening to an increase of the dipolar homogeneous broadening of the Cu2+ ESR lines due to the presence of oxygen vacancies which induce an S=1/2 spin inside the TiO6 octahedra. Correlation between a systematic dependence of the ESR linewidth on the oxygen content and the high dielectric constant of these materials is addressed. Also, ESR, magnetic susceptibility, and specific heat data for a single crystal of CaCu3Ti4O12 and for polycrystals of CdCu3Ti4O12 are reported.
Resumo:
The BBT films were prepared by a spin-coating process from the polymeric precursor method (Pechini process). In order to study the influence of the temperature on the BBT microstructure and electrical properties, the films were deposited on platinum coated silicon substrates and annealed from 700degreesC to 800degreesC for 2 hours in oxygen atmosphere. The crystallinity of the films was examined by X-ray diffraction while the surface morphology was analysed by atomic force microscope. The dielectric properties and dissipation factor of BaBi2Ta2O9 films at 1 MHz were observed. The polarization-electric field hysteresis loops revealed the ferroelectric characteristics of BaBi2Ta2O9 thin films.