972 resultados para Laplace-Metropolis estimator
Resumo:
In the thesis we present the implementation of the quadratic maximum likelihood (QML) method, ideal to estimate the angular power spectrum of the cross-correlation between cosmic microwave background (CMB) and large scale structure (LSS) maps as well as their individual auto-spectra. Such a tool is an optimal method (unbiased and with minimum variance) in pixel space and goes beyond all the previous harmonic analysis present in the literature. We describe the implementation of the QML method in the {\it BolISW} code and demonstrate its accuracy on simulated maps throughout a Monte Carlo. We apply this optimal estimator to WMAP 7-year and NRAO VLA Sky Survey (NVSS) data and explore the robustness of the angular power spectrum estimates obtained by the QML method. Taking into account the shot noise and one of the systematics (declination correction) in NVSS, we can safely use most of the information contained in this survey. On the contrary we neglect the noise in temperature since WMAP is already cosmic variance dominated on the large scales. Because of a discrepancy in the galaxy auto spectrum between the estimates and the theoretical model, we use two different galaxy distributions: the first one with a constant bias $b$ and the second one with a redshift dependent bias $b(z)$. Finally, we make use of the angular power spectrum estimates obtained by the QML method to derive constraints on the dark energy critical density in a flat $\Lambda$CDM model by different likelihood prescriptions. When using just the cross-correlation between WMAP7 and NVSS maps with 1.8° resolution, we show that $\Omega_\Lambda$ is about the 70\% of the total energy density, disfavouring an Einstein-de Sitter Universe at more than 2 $\sigma$ CL (confidence level).
Resumo:
tbd
Resumo:
Die vorliegende Arbeit ist motiviert durch biologische Fragestellungen bezüglich des Verhaltens von Membranpotentialen in Neuronen. Ein vielfach betrachtetes Modell für spikende Neuronen ist das Folgende. Zwischen den Spikes verhält sich das Membranpotential wie ein Diffusionsprozess X der durch die SDGL dX_t= beta(X_t) dt+ sigma(X_t) dB_t gegeben ist, wobei (B_t) eine Standard-Brown'sche Bewegung bezeichnet. Spikes erklärt man wie folgt. Sobald das Potential X eine gewisse Exzitationsschwelle S überschreitet entsteht ein Spike. Danach wird das Potential wieder auf einen bestimmten Wert x_0 zurückgesetzt. In Anwendungen ist es manchmal möglich, einen Diffusionsprozess X zwischen den Spikes zu beobachten und die Koeffizienten der SDGL beta() und sigma() zu schätzen. Dennoch ist es nötig, die Schwellen x_0 und S zu bestimmen um das Modell festzulegen. Eine Möglichkeit, dieses Problem anzugehen, ist x_0 und S als Parameter eines statistischen Modells aufzufassen und diese zu schätzen. In der vorliegenden Arbeit werden vier verschiedene Fälle diskutiert, in denen wir jeweils annehmen, dass das Membranpotential X zwischen den Spikes eine Brown'sche Bewegung mit Drift, eine geometrische Brown'sche Bewegung, ein Ornstein-Uhlenbeck Prozess oder ein Cox-Ingersoll-Ross Prozess ist. Darüber hinaus beobachten wir die Zeiten zwischen aufeinander folgenden Spikes, die wir als iid Treffzeiten der Schwelle S von X gestartet in x_0 auffassen. Die ersten beiden Fälle ähneln sich sehr und man kann jeweils den Maximum-Likelihood-Schätzer explizit angeben. Darüber hinaus wird, unter Verwendung der LAN-Theorie, die Optimalität dieser Schätzer gezeigt. In den Fällen OU- und CIR-Prozess wählen wir eine Minimum-Distanz-Methode, die auf dem Vergleich von empirischer und wahrer Laplace-Transformation bezüglich einer Hilbertraumnorm beruht. Wir werden beweisen, dass alle Schätzer stark konsistent und asymptotisch normalverteilt sind. Im letzten Kapitel werden wir die Effizienz der Minimum-Distanz-Schätzer anhand simulierter Daten überprüfen. Ferner, werden Anwendungen auf reale Datensätze und deren Resultate ausführlich diskutiert.
Resumo:
I dati derivanti da spettroscopia NMR sono l'effetto di fenomeni descritti attraverso la trasformata di Laplace della sorgente che li ha prodotti. Ci si riferisce a un problema inverso con dati discreti ed in relazione ad essi nasce l'esigenza di realizzare metodi numerici per l'inversione della trasformata di Laplace con dati discreti che è notoriamente un problema mal posto e pertanto occorre ricorrere a metodi di regolarizzazione. In questo contesto si propone una variante ai modelli presenti il letteratura che fanno utilizzo della norma L2, introducendo la norma L1.
Resumo:
Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.
Resumo:
There have been numerous councils throughout the Catholic Church?s history. From the First Council of Nicaea in 325 CE to Vatican II in 1962, only a few centuries have passed without any major church doctrinal change. Following hand in hand with changes in doctrine came the bifurcation of the Christian Church into the Roman CatholicChurch and the Orthodox Church. The first split came in 325 CE with Arianism. Arius of Alexandria and his followers did not agree with the Catholic Church?s viewpoint that the son, Jesus, should be on equal footing with the Father and the Holy Spirit. Constantine the Great brought the Arianism debate to the First Council of Nicaea,which declared Arianism a heretical religion. The following Catholic council?s decisions separated the two Churches even more, eventually creating the formal separation of the Church during the East-West Schism in the middle of the 11th century. Although the twoChurches constantly tried to unite, the Churches hit speed bumps along the way. Eventually, the 1274 Second Council of Lyons officially united the two Churches, even if only for an ephemeral time. At first glance, it might not seem that much resulted from the 1274 Second Council of Lyons. Almost immediately after the council?s ruling, the two Churches split again. Little is known as to why the 1274 Second Council of Lyons ultimately failed in its unification attempt. In this thesis, I will examine the churches of the Little Metropolis at Athens, Merbaka in the Argolid, and Agioi Theodoroi in Athens. In detailing the architectural features of these buildings, I will reconstruct the church building program in association with the 1274 Second Council of Lyons. I will also compare these churchesusing historical sources to keep the sociological, religious, political, and historical context accurate.
Resumo:
Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.
Resumo:
Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks’ impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.
Resumo:
We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.