972 resultados para Ideais (Algebra)
Resumo:
Treating algebraic symbols as objects (eg. “‘a’ means ‘apple’”) is a means of introducing elementary simplification of algebra, but causes problems further on. This current school-based research included an examination of texts still in use in the mathematics department, and interviews with mathematics teachers, year 7 pupils and then year 10 pupils asking them how they would explain, “3a + 2a = 5a” to year 7 pupils. Results included the notion that the ‘algebra as object’ analogy can be found in textbooks in current usage, including those recently published. Teachers knew that they were not ‘supposed’ to use the analogy but not always clear why, nevertheless stating methods of teaching consistent with an‘algebra as object’ approach. Year 7 pupils did not explicitly refer to ‘algebra as object’, although some of their responses could be so interpreted. In the main, year 10 pupils used ‘algebra as object’ to explain simplification of algebra, with some complicated attempts to get round the limitations. Further research would look to establish whether the appearance of ‘algebra as object’ in pupils’ thinking between year 7 and 10 is consistent and, if so, where it arises. Implications also are for on-going teacher training with alternatives to introducing such simplification.
Resumo:
The sigma model describing the dynamics of the superstring in the AdS(5) x S(5) background can be constructed using the coset PSU(2, 2 vertical bar 4)/SO(4, 1) x SO(5). A basic set of operators in this two dimensional conformal field theory is composed by the left invariant currents. Since these currents are not (anti) holomorphic, their OPE`s is not determined by symmetry principles and its computation should be performed perturbatively. Using the pure spinor sigma model for this background, we compute the one-loop correction to these OPE`s. We also compute the OPE`s of the left invariant currents with the energy momentum tensor at tree level and one loop.
Resumo:
We study the exact solution of an N-state vertex model based on the representation of the U(q)[SU(2)] algebra at roots of unity with diagonal open boundaries. We find that the respective reflection equation provides us one general class of diagonal K-matrices having one free-parameter. We determine the eigenvalues of the double-row transfer matrix and the respective Bethe ansatz equation within the algebraic Bethe ansatz framework. The structure of the Bethe ansatz equation combine a pseudomomenta function depending on a free-parameter with scattering phase-shifts that are fixed by the roots of unity and boundary variables. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Under the assumption that c is a regular cardinal, we prove the existence and uniqueness of a Boolean algebra B of size c defined by sharing the main structural properties that P(omega)/fin has under CH and in the N(2)-Cohen model. We prove a similar result in the category of Banach spaces. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Approximate Lie symmetries of the Navier-Stokes equations are used for the applications to scaling phenomenon arising in turbulence. In particular, we show that the Lie symmetries of the Euler equations are inherited by the Navier-Stokes equations in the form of approximate symmetries that allows to involve the Reynolds number dependence into scaling laws. Moreover, the optimal systems of all finite-dimensional Lie subalgebras of the approximate symmetry transformations of the Navier-Stokes are constructed. We show how the scaling groups obtained can be used to introduce the Reynolds number dependence into scaling laws explicitly for stationary parallel turbulent shear flows. This is demonstrated in the framework of a new approach to derive scaling laws based on symmetry analysis [11]-[13].
Resumo:
We classify groups G such that the unit group U-1 (ZG) is hypercentral. In the second part, we classify groups G whose modular group algebra has hyperbolic unit groups U-1 (KG).
Resumo:
We construct five new elements of degree 6 in the nucleus of the free alternative algebra. We use the representation theory of the symmetric group to locate the elements. We use the computer algebra system ALBERT and an extension of ALBERT to express the elements in compact form and to show that these new elements are not a consequence of the known clegree-5 elements in the nucleus. We prove that these five new elements and four known elements form a basis for the subspace of nuclear elements of degree 6. Our calculations are done using modular arithmetic to save memory and time. The calculations can be done in characteristic zero or any prime greater than 6, and similar results are expected. We generated the nuclear elements using prime 103. We check our answer using five other primes.
Resumo:
We classify all unital subalgebras of the Cayley algebra O(q) over the finite field F(q), q = p(n). We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of O(q). We also determine the structure of the Moufang loops associated with each subalgebra of O(q).
Resumo:
In this paper we construct two free field realizations of the elliptic affine Lie algebra sl(2, R) circle plus Omega(R)/dR where R = C[t. t(-1), u vertical bar u(2) = t(3) - 2bt(2) + t]. The first realization provides an analogue of Wakimoto`s construction for Affine Kac-Moody algebras, but in the setting of the elliptic affine Lie algebra. The second realization gives new types of representations analogous to Imaginary Verma modules in the Affine setting. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this thesis is to look for signs of students’ understanding of algebra by studying how they make the transition from arithmetic to algebra. Students in an Upper Secondary class on the Natural Science program and Science and Technology program were given a questionnaire with a number of algebraic problems of different levels of difficulty. Especially important for the study was that students leave comments and explanations of how they solved the problems. According to earlier research, transitions are the most critical steps in problem solving. The Algebraic Cycle is a theoretical tool that can be used to make different phases in problem solving visible. To formulate and communicate how the solution was made may lead to students becoming more aware of their thought processes. This may contribute to students gaining more understanding of the different phases involved in mathematical problem solving, and to students becoming more successful in mathematics in general.The study showed that the students could solve mathematical problems correctly, but that they in just over 50% of the cases, did not give any explanations to their solutions.
Resumo:
Syftet med den här uppsatsen är att undersöka elevers uppfattningar om algebra och problemlösning samt granska hur dessa uppfattningar påverkas beroende på elevernas val av gymnasieprogram, kön och slutbetyg i grundskolan. Syftet är vidare att ta reda på vilka eventuella hinder och svårigheter eleverna själva uppfattar då de använder algebra för att lösa matematiska problem. Som metod för att söka svar på syfte och frågeställningar har valts att genomföra en enkätundersökning med elever som går första året på gymnasiet och som läser antingen naturvetenskapsprogrammet eller bygg- och anläggningsprogrammet. Enkätundersökningen består av två delar, en del som undersöker elevers uppfattningar om matematik i allmänhet och algebra och problemlösning i synnerhet, samt en del som försöker reda ut vilka svårigheter eleverna uppfattar då de ska lösa matematiska problem med algebra. Svaren sammanställs genom en analys av vilka eventuella skillnader och likheter som finns beroende på elevernas val av gymnasieprogram, kön och betyg i grundskolan. Resultatet visar på att elever på naturvetenskapsprogrammet som hade MVG i betyg i grundskolan har en mer positiv inställning till algebra och problemlösning i jämförelse med elever från bygg- och anläggningsprogrammet som fått G i betyg. Vad gäller elevernas kön finns det inte några indikationer på att denna faktor har någon större påverkan på deras uppfattningar. Resultatet kan vara en indikation på att elevernas uppfattningar främst påverkas av deras förståelse för det algebraiska tankesättet. Det eleverna upplever som svårast när de ska lösa problem med hjälp av algebra är att översätta den skrivna texten till en algebraisk framställning. När eleverna löser matematiska problem indikerar även resultatet att de till stor del styrs av sina förväntningar och förutfattade föreställningar om uppgiften. Resultatet ger en indikation om att eleverna behöver arbeta mer med problemlösning i olika former för att genom det kunna träna upp sin resonemangsförmåga och sin förmåga att behärska alla de tre faserna, översättning, omskrivning och tolkning, i den algebraiska cykeln.
Resumo:
Nesta tese estudamos as derivações de ordem superior (DOS) em anéis não-comutativos. Inicialmente, mostramos que toda derivação tripla de Jordan de ordem superior em um anel semiprimo livre de 2-torção é uma DOS. Em particular, toda derivação de Jordan de ordem superior (DJOS) num anel deste tipo é uma DOS. Estendemos também o resultado a ideais de Lie U, provando que se R é um anel primo livre de 2-torção e D é uma DJOS de U em R onde U ct Z(R) é tal que U2E U para todo u E U, então D é uma DOS de U em R. Nestas condições, se U C Z(R), então o resultado não é válido. Estudamos ainda as DOS cujas componentes satisfazem relações de dependência linear sobre R ou Q (o anel de quocientes à direita de M artindale de R). Caracterizamos tais DOS, e mostramos que as relações de dependência linear são preservadas ao estendermos uma DOS de R a Q.