928 resultados para IR and Raman spectroscopy
Resumo:
Abstract: Raman spectroscopy has been used for the first time to predict the FA composition of unextracted adipose tissue of pork, beef, lamb, and chicken. It was found that the bulk unsaturation parameters could be predicted successfully [R-2 = 0.97, root mean square error of prediction (RMSEP) = 4.6% of 4 sigma], with cis unsaturation, which accounted for the majority of the unsaturation, giving similar correlations. The combined abundance of all measured PUFA (>= 2 double bonds per chain) was also well predicted with R-2 = 0.97 and RMSEP = 4.0% of 4 sigma. Trans unsaturation was not as well modeled (R-2 = 0.52, RMSEP = 18% of 4 sigma); this reduced prediction ability can be attributed to the low levels of trans FA found in adipose tissue (0.035 times the cis unsaturation level). For the individual FA, the average partial least squares (PLS) regression coefficient of the 18 most abundant FA (relative abundances ranging from 0.1 to 38.6% of the total FA content) was R-2 = 0.73; the average RMSEP = 11.9% of 4 sigma. Regression coefficients and prediction errors for the five most abundant FA were all better than the average value (in some cases as low as RMSEP = 4.7% of 4 sigma). Cross-correlation between the abundances of the minor FA and more abundant acids could be determined by principal component analysis methods, and the resulting groups of correlated compounds were also well-predicted using PLS. The accuracy of the prediction of individual FA was at least as good as other spectroscopic methods, and the extremely straightforward sampling method meant that very rapid analysis of samples at ambient temperature was easily achieved. This work shows that Raman profiling of hundreds of samples per day is easily achievable with an automated sampling system.
Resumo:
The potential of Raman spectroscopy to discriminate between architectural finishes (household paint) has been investigated using a test set of 51
Resumo:
The SERS spectra of adenine recorded under a broad range of pH values and concentrations using both silver and gold colloids provided evidence for the existence of several distinct species. At high concentration (0.5-10 ppm), the spectra recorded between pH 1 and 11 showed only two distinct spectra, rather than the three forms that would be expected for a compound with two pK(a) values of 4.2 and 9.8. The spectra at neutral and alkaline pH were identical and assigned to the deprotonated form of adenine on the basis of DFT calculations, isotope shifts, and comparison with the normal Raman spectra of neutral and deprotonated adenine. The spectra at acidic pH were different, consistent with adenine protonation. Neutral adenine was not detected at any pH studied. At low adenine concentration (
Resumo:
Raman spectroscopy with far-red excitation has been used to study seized, tableted samples of MDMA (N-methyl-3,4-methylenedioxyamphetamine) and related compounds (MDA, MDEA, MBDB, 2C-B and amphetamine sulfate), as well as pure standards of these drugs. We have found that by using far-red (785 nm) excitation the level of fluorescence background even in untreated seized samples is sufficiently low that there is little difficulty in obtaining good quality data with moderate 2 min data accumulation times. The spectra can be used to distinguish between even chemically-similar substances, such as the geometrical isomers MDEA and MBDB, and between different polymorphic/hydrated forms of the same drug. Moreover, these differences can be found even in directly recorded spectra of seized samples which have been bulked with other materials, giving a rapid and non-destructive method for drug identification. The spectra can be processed to give unambiguous identification of both drug and excipients (even when more than one compound has been used as the bulking agent) and the relative intensities of drug and excipient bands can be used for quantitative or at least semi-quantitative analysis. Finally, the simple nature of the measurements lends itself to automatic sample handling so that sample throughputs of 20 samples per hour can be achieved with no real difficulty.
Resumo:
Resonance Raman spectra of the T-1 excited states of Zn and free-base tetra-4-sulfonatophenylporphyrin (TPPS) have been recorded at room temperature in aqueous solution using two-colour time-resolved methods. The spectra of both sulfonated molecules are very similar to their tetraphenylporphyrin (TPP) analogues, which have been recorded in THF solution using the same pump-probe conditions, but they have higher signal-to-noise ratios because interference from strong solvent bands is reduced. Although two different T-1 spectra of Zn(TPP) have been reported these spectra differ slightly from each other and from the spectrum reported here, which has band positions very close (+/-6 cm(-1)) to those of Zn(TPPS). The high S/N ratios obtainable for the water-soluble porphyrins have allowed reliable polarization data to be recorded for their S-0 and T-1 states. This data set allows a realistic comparison of the changes in bonding associated with excitation of both free-base and Zn tetraarylporphyrins to the T-1 state.
Resumo:
Two-color time-resolved resonance Raman spectroscopy has been used to probe the lowest excited singlet (S1) and triplet (T1) states of free-base meso-tetraphenylporphyrin and meso-tetrakis(4-sulphonatophenyl)porphyrin in solution at room temperature. The spectra were recorded using 532-nm excitation pulses and time-delayed probe pulses (DELTAT = 0-30 ns, 447 and 460 nm) near lambda(max) of the S1 and T1 states. Significant shifts in frequency of the porphyrin core vibrations were observed upon excitation to either the S1 or T1 state. Several of the strongest polarized bands in the spectra of both excited states, including nu1, nu2, nu4, nu6, and phi4, are assigned, and the information they give on the differences in electron distribution in the ground, S1, and T1 states is discussed.