326 resultados para INFERÊNCIA
Resumo:
Objetivou-se verificar a possibilidade de utilização da prenhez de novilhas aos 16 meses (Pr16) como critério de seleção e as possíveis associações genéticas entre prenhez em novilhas aos 16 meses e o peso à desmama (PD) e o ganho de peso médio da desmama ao sobreano (GP). Foram realizadas análises uni e bicaracterísticas para estimação dos componentes de co-variância, empregando-se um modelo animal linear para peso à desmama e ganho de peso da desmama ao sobreano e não-linear para Pr16. A estimação dos componentes de variância e da predição dos valores genéticos dos animais foi realizada por Inferência Bayesiana. Distribuições flat foram utilizadas para todos os componentes de co-variância. As estimativas de herdabilidade direta para Pr16, PD e GP foram 0,50; 0,24 e 0,15, respectivamente, e a estimativa de herdabilidade materna para o PD, de 0,07. As correlações genéticas foram -0,25 e 0,09 entre Pr16, PD e GP, respectivamente, e a correlação genética entre Pr16 e o efeito genético materno do PD, de 0,29. A herdabilidade da prenhez aos 16 meses indica que essa característica pode ser utilizada como critério de seleção. As correlações genéticas estimadas indicam que a seleção por animais mais pesados à desmama, a longo prazo, pode diminuir a ocorrência de prenhez aos 16 meses de idade. Além disso, a seleção para maior habilidade materna favorece a seleção de animais mais precoces. No entanto, a seleção para ganho de peso da desmama ao sobreano não leva a mudanças genéticas na precocidade sexual em fêmeas.
Resumo:
Objetivou-se com este trabalho estimar as herdabilidades (h²) e as correlações genéticas (r g) entre idade ao primeiro parto (IPP) e primeiro intervalo de partos (PIEP) e outras características como peso (PS) ao ano (A) e ao sobreano (S), altura do posterior (ALT) e perímetro escrotal (PE450) em animais da raça Nelore. Os parâmetros genéticos foram estimados em uma análise multicaracterística por modelo animal, utilizando-se a inferência bayesiana via algoritmo de Gibbs Sampling. Os parâmetros genéticos estimados sugerem a existência de variabilidade genética para IPP (h² = 0,26), sendo que a seleção para a diminuição da IPP de fêmeas Nelore deve responder à seleção individual, sem causar antagonismo do valor genético dos animais para PS (r g = -0,22 (A) e -0,44 (S)) e PE450 (r g = 0,02). A seleção para a diminuição da IPP, no longo prazo, pode levar a um aumento da ALT dos animais, embora essa associação seja relativamente baixa (-0,35). A estimativa de herdabilidade a posteriori para a característica PIEP foi baixa, 0,11±0,03. As r g entre PIEP e as demais características estudadas indicam que a seleção para essas características de crescimento não afetará o PIEP.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo deste trabalho foi avaliar o efeito da interação genótipo x ambiente (GxA), nas características peso à desmama e ganho de peso do nascimento à desmama, em machos e fêmeas da raça Simental, nascidos nas estações chuvosa e seca. Foram avaliados 20 mil animais, aos 210 dias de idade. Realizou-se uma análise multicaracterística, que considerou como distinta a mesma característica nos diferentes grupos ambientais, e uma análise unicaracterística, que considerou cada característica como a mesma em todos os grupos ambientais. Ainteração GxA foi avaliada por meio da correlação genética (r g). As interações foram consideradas importantes quando os valores de r g ficaram abaixo de 0,80. As distribuições posteriores das estimativas de herdabilidades mostraram ausência de heterogeneidade de variâncias entre os sexos, entretanto houve interação GxA entre os grupos ambientais. Observaram-se valores de correlação genética de 0,54 a 0,78 e 0,55 a 0,75 para peso à desmama e ganho de peso do nascimento à desmama, respectivamente. As seleções, baseadas tanto na análise unicaracterística quanto na multicaracterística, não mostraram diferenças significativas quanto ao ganho genético dos animais. Há efeito das estações de nascimento nas características avaliadas, em todos os grupos ambientais, e a interação GxA é mais evidente em fêmeas do que em machos.
Resumo:
Objetivou-se, com este trabalho, estimar a herdabilidade (h²) para prenhez de novilhas e sua correlação genética (rg) com idade ao primeiro parto (IPP), em animais da raça Nelore. A prenhez de novilhas foi definida de três formas: prenhez aos 16 meses (Pr16) - para as novilhas que pariram com menos de 31 meses, atribuiu-se 1 (sucesso) e, para aquelas que pariram após 30,99 meses ou que não pariram, atribuiu-se 0 (fracasso); prenhez aos 24 meses (Pr24) - para as novilhas que pariram até 46 meses (incluindo as Pr16), foi atribuído 1 e, para aquelas que não pariram 0; e prenhez da novilha (PrN) - atribuiu-se classificação 2 para as que pariram com menos de 31 meses, 1 para as que pariram entre 31 e 46 meses e 0 para as que não pariram. Os arquivos, analisados pelo Método R e Inferência Bayesiana, continham registros de 30.802 novilhas desmamadas. As análises forneceram médias de estimativas de h² de 0,52, 0,12 e 0,16 para Pr16, Pr24 e PrN, respectivamente, pelo Método R. O valor médio obtido por Inferência Bayesiana foi de 0,45 para Pr16. A rg estimada entre Pr16 e IPP foi -0,32. Os resultados indicam que, para selecionar para precocidade sexual, é necessário expor todas as fêmeas em idades jovens e que a mensuração da taxa de prenhez por meio da Pr16 é pertinente, uma vez que esta característica apresenta variabilidade genética alta e deve responder eficientemente à seleção com possibilidades de rápido ganho genético. A análise indicou também que Pr16 e IPP são determinadas em grande parte por genes diferentes.
Resumo:
The progressing cavity pump artificial lift system, PCP, is a main lift system used in oil production industry. As this artificial lift application grows the knowledge of it s dynamics behavior, the application of automatic control and the developing of equipment selection design specialist systems are more useful. This work presents tools for dynamic analysis, control technics and a specialist system for selecting lift equipments for this artificial lift technology. The PCP artificial lift system consists of a progressing cavity pump installed downhole in the production tubing edge. The pump consists of two parts, a stator and a rotor, and is set in motion by the rotation of the rotor transmitted through a rod string installed in the tubing. The surface equipment generates and transmits the rotation to the rod string. First, is presented the developing of a complete mathematical dynamic model of PCP system. This model is simplified for use in several conditions, including steady state for sizing PCP equipments, like pump, rod string and drive head. This model is used to implement a computer simulator able to help in system analysis and to operates as a well with a controller and allows testing and developing of control algorithms. The next developing applies control technics to PCP system to optimize pumping velocity to achieve productivity and durability of downhole components. The mathematical model is linearized to apply conventional control technics including observability and controllability of the system and develop design rules for PI controller. Stability conditions are stated for operation point of the system. A fuzzy rule-based control system are developed from a PI controller using a inference machine based on Mandami operators. The fuzzy logic is applied to develop a specialist system that selects PCP equipments too. The developed technics to simulate and the linearized model was used in an actual well where a control system is installed. This control system consists of a pump intake pressure sensor, an industrial controller and a variable speed drive. The PI control was applied and fuzzy controller was applied to optimize simulated and actual well operation and the results was compared. The simulated and actual open loop response was compared to validate simulation. A case study was accomplished to validate equipment selection specialist system
Resumo:
Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations
Resumo:
O objetivo deste trabalho foi estimar parâmetros genéticos para idades ao primeiro (IPP) e segundo partos (ISP), idades ao primeiro (IPP PEN) e segundo partos penalizadas (ISP PEN), e a ocorrência de parto até os 38 meses de idade (PP38), em bovinos da raça Canchim, bem como estimar as relações genéticas entre essas características e o peso (PE420) de machos e femêas e a circunferência escrotal (CE420) de novilhos, medidos aos 420 dias de idade. Foram estimados parâmetros genéticos em análises bicaracterísticas, por meio de inferência bayesiana. As análises foram realizadas entre CE420 e PE420 e as características reprodutivas medidas em fêmeas. As características reprodutivas das fêmeas devem apresentar baixa resposta à seleção, e mudanças no manejo e nas condições ambientais melhoram tais características. A seleção quanto ao maior peso aos 420 dias de idade não deve provocar mudanças nas características reprodutivas em fêmeas, enquanto a seleção para o aumento da circunferência escrotal, na mesma idade, contribui para melhorar tais características.
Resumo:
The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software
Resumo:
Este trabalho apresenta um levantamento dos problemas associados à influência da observabilidade e da visualização radial no projeto de sistemas de monitoramento para redes de grande magnitude e complexidade. Além disso, se propõe a apresentar soluções para parte desses problemas. Através da utilização da Teoria de Redes Complexas, são abordadas duas questões: (i) a localização e a quantidade de nós necessários para garantir uma aquisição de dados capaz de representar o estado da rede de forma efetiva e (ii) a elaboração de um modelo de visualização das informações da rede capaz de ampliar a capacidade de inferência e de entendimento de suas propriedades. A tese estabelece limites teóricos a estas questões e apresenta um estudo sobre a complexidade do monitoramento eficaz, eficiente e escalável de redes
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
This paper describes the design, implementation and enforcement of a system for industrial process control based on fuzzy logic and developed using Java, with support for industrial communication protocol through the OPC (Ole for Process Control). Besides the java framework, the software is completely independent from other platforms. It provides friendly and functional tools for modeling, construction and editing of complex fuzzy inference systems, and uses these logical systems in control of a wide variety of industrial processes. The main requirements of the developed system should be flexibility, robustness, reliability and ease of expansion
Resumo:
Nowadays, classifying proteins in structural classes, which concerns the inference of patterns in their 3D conformation, is one of the most important open problems in Molecular Biology. The main reason for this is that the function of a protein is intrinsically related to its spatial conformation. However, such conformations are very difficult to be obtained experimentally in laboratory. Thus, this problem has drawn the attention of many researchers in Bioinformatics. Considering the great difference between the number of protein sequences already known and the number of three-dimensional structures determined experimentally, the demand of automated techniques for structural classification of proteins is very high. In this context, computational tools, especially Machine Learning (ML) techniques, have become essential to deal with this problem. In this work, ML techniques are used in the recognition of protein structural classes: Decision Trees, k-Nearest Neighbor, Naive Bayes, Support Vector Machine and Neural Networks. These methods have been chosen because they represent different paradigms of learning and have been widely used in the Bioinfornmatics literature. Aiming to obtain an improvment in the performance of these techniques (individual classifiers), homogeneous (Bagging and Boosting) and heterogeneous (Voting, Stacking and StackingC) multiclassification systems are used. Moreover, since the protein database used in this work presents the problem of imbalanced classes, artificial techniques for class balance (Undersampling Random, Tomek Links, CNN, NCL and OSS) are used to minimize such a problem. In order to evaluate the ML methods, a cross-validation procedure is applied, where the accuracy of the classifiers is measured using the mean of classification error rate, on independent test sets. These means are compared, two by two, by the hypothesis test aiming to evaluate if there is, statistically, a significant difference between them. With respect to the results obtained with the individual classifiers, Support Vector Machine presented the best accuracy. In terms of the multi-classification systems (homogeneous and heterogeneous), they showed, in general, a superior or similar performance when compared to the one achieved by the individual classifiers used - especially Boosting with Decision Tree and the StackingC with Linear Regression as meta classifier. The Voting method, despite of its simplicity, has shown to be adequate for solving the problem presented in this work. The techniques for class balance, on the other hand, have not produced a significant improvement in the global classification error. Nevertheless, the use of such techniques did improve the classification error for the minority class. In this context, the NCL technique has shown to be more appropriated
Resumo:
In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.
Resumo:
The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software