148 resultados para Hausdorff frattali Mandelbrot


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper continues the study of spectral synthesis and the topologies τ∞ and τr on the ideal space of a Banach algebra, concentrating on the class of Banach *-algebras, and in particular on L1-group algebras. It is shown that if a group G is a finite extension of an abelian group then τr is Hausdorff on the ideal space of L1(G) if and only if L1(G) has spectral synthesis, which in turn is equivalent to G being compact. The result is applied to nilpotent groups, [FD]−-groups, and Moore groups. An example is given of a non-compact, non-abelian group G for which L1(G) has spectral synthesis. It is also shown that if G is a non-discrete group then τr is not Hausdorff on the ideal lattice of the Fourier algebra A(G).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a family of local CSS stabilizer codes as possible candidates for self-correcting quantum memories in 3D. The construction is inspired by the classical Ising model on a Sierpinski carpet fractal, which acts as a classical self-correcting memory. Our models are naturally defined on fractal subsets of a 4D hypercubic lattice with Hausdorff dimension less than 3. Though this does not imply that these models can be realized with local interactions in R3, we also discuss this possibility. The X and Z sectors of the code are dual to one another, and we show that there exists a finite temperature phase transition associated with each of these sectors, providing evidence that the system may robustly store quantum information at finite temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los desarrollos que se dan en la geometr?a a partir de propuestas como la de B. Mandelbrot y que dan lugar al desarrollo de estructuras fractales son del inter?s para que en este trabajo de grado se pretenda abordar la visualizaci?n como un proceso que influye en el pensamiento, desde el acercamiento que se hace a la geometr?a fractal. Particularmente como los estudiantes de grado noveno entienden un objeto fractal desde la visualizaci?n del mismo, a partir de situaciones did?cticas que consideren algunas construcciones que se destacan en el contexto de la geometr?a fractal, entre las que encontramos el conjunto de Cantor, el tri?ngulo de Sierpinski y la curva de Koch. Sin dejar de lado la importancia que se le brinda a la llegada de las nuevas tecnolog?as de la informaci?n a las aulas y que en educaci?n podr?an ser generadoras de numerosas expectativas respecto al conocimiento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show how to reconstruct a graded ample Hausdorff groupoid with topologically principal neutrally-graded component from the ring structure of its graded Steinberg algebra over any commutative integral domain with 1, together with the embedding of the canonical abelian subring of functions supported on the unit space. We deduce that diagonal-preserving ring isomorphism of Leavitt path algebras implies $C^*$-isomorphism of $C^*$-algebras for graphs $E$ and $F$ in which every cycle has an exit. This is a joint work with Joan Bosa, Roozbeh Hazrat and Aidan Sims.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classification of minimal sets is a central theme in abstract topological dynamics. Recently this work has been strengthened and extended by consideration of homomorphisms. Background material is presented in Chapter I. Given a flow on a compact Hausdorff space, the action extends naturally to the space of closed subsets, taken with the Hausdorff topology. These hyperspaces are discussed and used to give a new characterization of almost periodic homomorphisms. Regular minimal sets may be described as minimal subsets of enveloping semigroups. Regular homomorphisms are defined in Chapter II by extending this notion to homomorphisms with minimal range. Several characterizations are obtained. In Chapter III, some additional results on homomorphisms are obtained by relativizing enveloping semigroup notions. In Veech's paper on point distal flows, hyperspaces are used to associate an almost one-to-one homomorphism with a given homomorphism of metric minimal sets. In Chapter IV, a non-metric generalization of this construction is studied in detail using the new notion of a highly proximal homomorphism. An abstract characterization is obtained, involving only the abstract properties of homomorphisms. A strengthened version of the Veech Structure Theorem for point distal flows is proved. In Chapter V, the work in the earlier chapters is applied to the study of homomorphisms for which the almost periodic elements of the associated hyperspace are all finite. In the metric case, this is equivalent to having at least one fiber finite. Strong results are obtained by first assuming regularity, and then assuming that the relative proximal relation is closed as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho será apresentado um método recente de compressão de imagens baseado na teoria dos Sistemas de Funções Iteradas (SFI), designado por Compressão Fractal. Descrever-se-á um modelo contínuo para a compressão fractal sobre o espaço métrico completo Lp, onde será definido um operador de transformação fractal contractivo associado a um SFI local com aplicações. Antes disso, será introduzida a teoria dos SFIs no espaço de Hausdorff ou espaço fractal, a teoria dos SFIs Locais - uma generalização dos SFIs - e dos SFIs no espaço Lp. Fornecida a fundamentação teórica para o método será apresentado detalhadamente o algoritmo de compressão fractal. Serão também descritas algumas estratégias de particionamento necessárias para encontrar o SFI com aplicações, assim como, algumas estratégias para tentar colmatar o maior entrave da compressão fractal: a complexidade de codificação. Esta dissertação assumirá essencialmente um carácter mais teórico e descritivo do método de compressão fractal, e de algumas técnicas, já implementadas, para melhorar a sua eficácia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las matemáticas, como muchas otras áreas del pensamiento, han sufrido en el tercio central del siglo XX el impacto de la corriente filosófica estructuralista. Esta tendía a desplazar el centro de atención hacia los problemas de fundamentación por una parte, y por otra subrayaba la importancia de las estructuras abstractas como la de conjunto, grupo u otras, que se presentan en diversas áreas de las matemáticas. En general la corriente estructuralista impregna a las matemáticas de los métodos del álgebra y es compañera inevitable de una tendencia hacia la abstracción. El estructuralismo ha estado lejos de ser un factor determinante en el desarrollo de la producción matemática en el último siglo, ya que el volumen ingente de investigación volcada hacia las aplicaciones ha pesado de forma decisiva en el resultado global. Sin embargo, es en el ámbito de la enseñanza de las matemáticas donde la influencia del estructuralismo ha sido más profunda, penetrando en los programas a todos los niveles educativos y provocando que al estudiar matemáticas, los estudiantes se queden con la impresión de que no hay nada nuevo en matemáticas desde Euclides o Pitágoras, es decir, desde hace más de 2000 años. Con un poco de suerte, algunos se cree que las matemáticas dejaron de desarrollarse después de la creación del cálculo diferencial e integral (hace unos 300 años), en cambio no tenemos la misma impresión sobre otras ciencias como física, química o biología. La geometría fractal, cuyos primeros desarrollos datan de finales del siglo XIX, ha recibido durante los últimos treinta años, desde la publicación de los trabajos de Mandelbrot, una atención y un auge crecientes. Lejos de ser simplemente una herramienta de generación de impresionantes paisajes virtuales, la geometría fractal viene avalada por la teoría geométrica de la medida y por innumerables aplicaciones en ciencias tan dispares como la Física, la Química, la Economía o, incluso, la Informática.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente trabajo se plantea la relación entre el Álgebra Conmutativa y la Topología, desarrollando una topología particular sobre el conjunto de todos los ideales primos de un anillo conmutativo cualquiera. Y haciendo un estudio del espectro primo del anillo. Para ello hacemos uso tanto de las nociones de Álgebra como las de Topología. Luego se estudia el subespacio maximal del espectro primo para ver la relación que hay entre un espacio topológico compacto Hausdorff y el subespacio maximal del anillo de todas las funciones continuas reales sobre dicho espacio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doctor of Philosophy in Mathematics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Arquitectura com Especialização em Urbanismo, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis mainly concerns the study of intrinsically regular submanifolds of low codimension in the Heisenberg group H^n, called H-regular surfaces of low codimension, from the point of view of geometric measure theory. We consider an H-regular surface of H^n of codimension k, with k between 1 and n, parametrized by a uniformly intrinsically differentiable map acting between two homogeneous complementary subgroups of H^n, with target subgroup horizontal of dimension k. In particular the considered submanifold is the intrinsic graph of the parametrization. We extend various results of Ambrosio, Serra Cassano and Vittone, available for the case when k = 1. We prove that the uniform intrinsic differentiability of the parametrizing map is equivalent to the existence and continuity of its intrinsic differential, to the local existence of a suitable approximating family of Euclidean regular maps, and, when the domain and the codomain of the map are orthogonal, to the existence and continuity of suitably defined intrinsic partial derivatives of the function. Successively, we present a series of area formulas, proved in collaboration with V. Magnani. They allow to compute the (2n+2−k)-dimensional spherical Hausdorff measure and the (2n+2−k)-dimensional centered Hausdorff measure of the parametrized H-regular surface, with respect to any homogeneous distance fixed on H^n. Furthermore, we focus on (G,M)-regular sets of G, where G and M are two arbitrary Carnot groups. Suitable implicit function theorems ensure the local existence of an intrinsic parametrization of such a set, at any of its points. We prove that it is uniformly intrinsically differentiable. Finally, we prove a coarea-type inequality for a continuously Pansu differentiable function acting between two Carnot groups endowed with homogeneous distances. We assume that the level sets of the function are uniformly lower Ahlfors regular and that the Pansu differential is everywhere surjective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiation dose in x-ray computed tomography (CT) has become a topic of great interest due to the increasing number of CT examinations performed worldwide. In fact, CT scans are responsible of significant doses delivered to the patients, much larger than the doses due to the most common radiographic procedures. This thesis work, carried out at the Laboratory of Medical Technology (LTM) of the Rizzoli Orthopaedic Institute (IOR, Bologna), focuses on two primary objectives: the dosimetric characterization of the tomograph present at the IOR and the optimization of the clinical protocol for hip arthroplasty. In particular, after having verified the reliability of the dose estimates provided by the system, we compared the estimates of the doses delivered to 10 patients undergoing CT examination for the pre-operative planning of hip replacement with the Diagnostic Reference Level (DRL) for an osseous pelvis examination. Out of 10 patients considered, only for 3 of them the doses were lower than the DRL. Therefore, the necessity to optimize the clinical protocol emerged. This optimization was investigated using a human femur from a cadaver. Quantitative analysis and comparison of 3D reconstructions were made, after having performed manual segmentation of the femur from different CT acquisitions. Dosimetric simulations of the CT acquisitions on the femur were also made and associated to the accuracy of the 3D reconstructions, to analyse the optimal combination of CT acquisition parameters. The study showed that protocol optimization both in terms of Hausdorff distance and in terms of effective dose (ED) to the patient may be realized simply by modifying the value of the pitch in the protocol, by choosing between 0.98 and 1.37.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi verrà enunciato e dimostrato un notevole teorema chiamato identità di Pohozaev, che riguarda le soluzioni di particolari problemi di Dirichlet per il Laplaciano. Questo risultato sarà ottenuto come corollario del classico teorema della divergenza. Dopo alcune nozioni preliminari, si enuncia il teorema della divergenza. Infine, dopo una breve introduzione riguardo le equazioni alle derivate parziali del 2° ordine e problemi di Dirichlet per il Laplaciano, viene enunciata e dimostrata l'identità di Pohozaev. Seguono alcuni corollari, dei quali uno riguarda la non esistenza di soluzioni per un particolare problema di Dirichlet.