949 resultados para Generalized hypergeometric polynomials
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1
Resumo:
For highly compressible normally consolidated saturated soil the compression index, Cc, is not constant over the entire pressure range. However, the ratio of the compression index and the initial specific volume, generally known as the compression ratio, appears to be constant. Thus settlement seems to depend on Cc/(1 + e) rather than Cc alone. Using the theoretical zero air voids line and the generalized compressibility equation for normally consolidated saturated soils, a generalized and simple equation for compression has been derived in the form: C'c = 0.003wL.
Resumo:
A procedure has been given for minimizing the total output noise of a Generalized Impedance Converter (GIC), subject to constraints dictated by signal handling capability of the Operational Amplifiers and ease of microcircuit fabrication. The noise reduction is achieved only by the adjustment of RC elements of the GIC, and the total output noise after optimization in the example cited is close to the theoretical lower limit. The output noise of a higher-order filter can be reduced by RC-optimizing the individual GIC's of the active realization. Experimental results on a 20–24 kHz channel bank band-pass filter demonstrate the effectiveness of the above procedure.
Resumo:
A generalized analysis, using the Vander Lugt operational notation, of the building block optical system comprising a single holographic optical element (HOE) for achieving simultaneous display of the spectrum and the image of an object in a single plane, has been carried out. The salient features of this analysis are: (1) it allows comprehensive characterization of the HOE, (2) it provides insights into the many possible configurations for the system, and (3) it explains the existing results in a consistent manner.
Resumo:
An algorithm that uses integer arithmetic is suggested. It transforms anm ×n matrix to a diagonal form (of the structure of Smith Normal Form). Then it computes a reflexive generalized inverse of the matrix exactly and hence solves a system of linear equations error-free.
Resumo:
We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concommitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature.
Resumo:
In this paper we obtain existence theorems for generalized Hammerstein-type equations K(u)Nu + u = 0, where for each u in the dual X* of a real reflexive Banach space X, K(u): X -- X* is a bounded linear map and N: X* - X is any map (possibly nonlinear). The method we adopt is totally different from the methods adopted so far in solving these equations. Our results in the reflexive spacegeneralize corresponding results of Petry and Schillings.
Resumo:
One of the major tasks in swarm intelligence is to design decentralized but homogenoeus strategies to enable controlling the behaviour of swarms of agents. It has been shown in the literature that the point of convergence and motion of a swarm of autonomous mobile agents can be controlled by using cyclic pursuit laws. In cyclic pursuit, there exists a predefined cyclic connection between agents and each agent pursues the next agent in the cycle. In this paper we generalize this idea to a case where an agent pursues a point which is the weighted average of the positions of the remaining agents. This point correspond to a particular pursuit sequence. Using this concept of centroidal cyclic pursuit, the behavior of the agents is analyzed such that, by suitably selecting the agents' gain, the rendezvous point of the agents can be controlled, directed linear motion of the agents can be achieved, and the trajectories of the agents can be changed by switching between the pursuit sequences keeping some of the behaviors of the agents invariant. Simulation experiments are given to support the analytical proofs.
Resumo:
Studies on compressibility and shear strength aspects are the concern of many investigators concerned with partly saturated soils. In soil engineering connected with partly saturated soils, there are no approaches connecting soil states and stress conditions. The present investigation is essentially a step in this direction. A generalized state parameter, identified with regard to material states is shown to be related to the compressibility and shear strength. The involved parameters are simple and normally determined in routine investigations. The advantage of this approach is that changes in soil states due to external stress conditions and the associated changes in strength can be examined particularly when different types of soils are involved.
Resumo:
We present a method for measuring the local velocities and first-order variations in velocities in a timevarying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.
Resumo:
We present a method for measuring the local velocities and first-order variations in velocities in a time-varying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme [Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.
Resumo:
The capturability of a realistic generalized true proportional navigation (RGTPN) guidance law, against a nonmaneuvering target, is analyzed. The RGTPN law is obtained by relaxing the somewhat unrealistic assumption of constant closing velocity, made in all earlier studies on generalized true proportional navigation (GTPN), and incorporating the actual time-varying value in the guidance law. Closed-form solutions for the complete capture region of RGTPN is obtained in terms of both zero and acceptable non-zero miss distances. It is shown that the capture region of RGTPN in the initial relative velocity space is significantly smaller than that of GTPN, for reasonable values of navigation constant (N) and angular direction (eta) of the missile commanded latax. However, for certain values of N and eta, capturability of RGTPN is found to be better. It is also shown that if in one of the versions of GTPN, which uses constant values of both the closing velocity and the line-of-sight (LOS) angular velocity in the guidance law, the corresponding realistic time-varying quantities are used, the capture region actually expands to cover the whole of the initial relative velocity space. A number of examples are given to compare the capture performance of RGTPN with other versions of the GTPN guidance laws.
Resumo:
The paper examines the suitability of the generalized data rule in training artificial neural networks (ANN) for damage identification in structures. Several multilayer perceptron architectures are investigated for a typical bridge truss structure with simulated damage stares generated randomly. The training samples have been generated in terms of measurable structural parameters (displacements and strains) at suitable selected locations in the structure. Issues related to the performance of the network with reference to hidden layers and hidden. neurons are examined. Some heuristics are proposed for the design of neural networks for damage identification in structures. These are further supported by an investigation conducted on five other bridge truss configurations.
Resumo:
We use the Thomas-Fermi method to examine the thermodynamics of particles obeying Haldane exclusion statistics. Specifically, we study Calogero-Sutherland particles placed in a given external potential in one dimension. For the case of a simple harmonic potential (constant density of states), we obtain the exact one-particle spatial density and a {\it closed} form for the equation of state at finite temperature, which are both new results. We then solve the problem of particles in a $x^{2/3} ~$ potential (linear density of states) and show that Bose-Einstein condensation does not occur for any statistics other than bosons.