874 resultados para Forecasting Volatility
Resumo:
BIOMOD is a computer platform for ensemble forecasting of species distributions, enabling the treatment of a range of methodological uncertainties in models and the examination of species-environment relationships. BIOMOD includes the ability to model species distributions with several techniques, test models with a wide range of approaches, project species distributions into different environmental conditions (e.g. climate or land use change scenarios) and dispersal functions. It allows assessing species temporal turnover, plot species response curves, and test the strength of species interactions with predictor variables. BIOMOD is implemented in R and is a freeware, open source, package
Resumo:
What determined the volatility of asset prices in Germany between thewars? This paper argues that the influence of political factors has beenoverstated. The majority of events increasing political uncertainty hadlittle or no effect on the value of German assets and the volatility ofreturns on them. Instead, it was inflation (and the fear of it) that islargely responsible for most of the variability in asset returns.
Resumo:
We see that the price of an european call option in a stochastic volatilityframework can be decomposed in the sum of four terms, which identifythe main features of the market that affect to option prices: the expectedfuture volatility, the correlation between the volatility and the noisedriving the stock prices, the market price of volatility risk and thedifference of the expected future volatility at different times. We alsostudy some applications of this decomposition.
Resumo:
This paper presents a two-factor (Vasicek-CIR) model of the term structure of interest rates and develops its pricing and empirical properties. We assume that default free discount bond prices are determined by the time to maturity and two factors, the long-term interest rate and the spread. Assuming a certain process for both factors, a general bond pricing equation is derived and a closed-form expression for bond prices is obtained. Empirical evidence of the model's performance in comparisson with a double Vasicek model is presented. The main conclusion is that the modeling of the volatility in the long-term rate process can help (in a large amount) to fit the observed data can improve - in a reasonable quantity - the prediction of the future movements in the medium- and long-term interest rates. However, for shorter maturities, it is shown that the pricing errors are, basically, negligible and it is not so clear which is the best model to be used.
Resumo:
In this paper we address a problem arising in risk management; namely the study of price variations of different contingent claims in the Black-Scholes model due to anticipating future events. The method we propose to use is an extension of the classical Vega index, i.e. the price derivative with respect to the constant volatility, in thesense that we perturb the volatility in different directions. Thisdirectional derivative, which we denote the local Vega index, will serve as the main object in the paper and one of the purposes is to relate it to the classical Vega index. We show that for all contingent claims studied in this paper the local Vega index can be expressed as a weighted average of the perturbation in volatility. In the particular case where the interest rate and the volatility are constant and the perturbation is deterministic, the local Vega index is an average of this perturbation multiplied by the classical Vega index. We also study the well-known goal problem of maximizing the probability of a perfect hedge and show that the speed of convergence is in fact dependent of the local Vega index.
Resumo:
We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for a particular type of diffuse, for Minnesota-type and for hierarchical priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.
Resumo:
This paper presents a comparative analysis of linear and mixed modelsfor short term forecasting of a real data series with a high percentage of missing data. Data are the series of significant wave heights registered at regular periods of three hours by a buoy placed in the Bay of Biscay.The series is interpolated with a linear predictor which minimizes theforecast mean square error. The linear models are seasonal ARIMA models and themixed models have a linear component and a non linear seasonal component.The non linear component is estimated by a non parametric regression of dataversus time. Short term forecasts, no more than two days ahead, are of interestbecause they can be used by the port authorities to notice the fleet.Several models are fitted and compared by their forecasting behavior.
Resumo:
In this paper, generalizing results in Alòs, León and Vives (2007b), we see that the dependence of jumps in the volatility under a jump-diffusion stochastic volatility model, has no effect on the short-time behaviour of the at-the-money implied volatility skew, although the corresponding Hull and White formula depends on the jumps. Towards this end, we use Malliavin calculus techniques for Lévy processes based on Løkka (2004), Petrou (2006), and Solé, Utzet and Vives (2007).
Resumo:
We lay out a small open economy version of the Calvo sticky price model, and show how the equilibrium dynamics can be reduced to simple representation in domestic inflation and the output gap. We use the resulting framework to analyze the macroeconomic implications of three alternative rule-based policy regimes for the small open economy: domestic inflation and CPI-based Taylor rules, and an exchange rate peg. We show that a key difference amongthese regimes lies in the relative amount of exchange rate volatility that they entail. We also discuss a special case for which domestic inflation targeting constitutes the optimal policy, and where a simple second order approximation to the utility of the representative consumer can be derived and used to evaluate the welfare losses associated with the suboptimal rules.
Resumo:
Species' geographic ranges are usually considered as basic units in macroecology and biogeography, yet it is still difficult to measure them accurately for many reasons. About 20 years ago, researchers started using local data on species' occurrences to estimate broad scale ranges, thereby establishing the niche modeling approach. However, there are still many problems in model evaluation and application, and one of the solutions is to find a consensus solution among models derived from different mathematical and statistical models for niche modeling, climatic projections and variable combination, all of which are sources of uncertainty during niche modeling. In this paper, we discuss this approach of ensemble forecasting and propose that it can be divided into three phases with increasing levels of complexity. Phase I is the simple combination of maps to achieve a consensual and hopefully conservative solution. In Phase II, differences among the maps used are described by multivariate analyses, and Phase III consists of the quantitative evaluation of the relative magnitude of uncertainties from different sources and their mapping. To illustrate these developments, we analyzed the occurrence data of the tiger moth, Utetheisa ornatrix (Lepidoptera, Arctiidae), a Neotropical moth species, and modeled its geographic range in current and future climates.
Resumo:
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be neither a difussion, nor a Markov process as the examples in section 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
Resumo:
We show that the Heston volatility or equivalently the Cox-Ingersoll-Ross process is Malliavin differentiable and give an explicit expression for the derivative. This result assures the applicability of Malliavin calculus in the framework of the Heston stochastic volatility model and the Cox-Ingersoll-Ross model for interest rates.
Resumo:
The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. in this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche-theory models that group species by habitat (more specifically, by environmental conditions under which a species can persist or does persist), (3) general circulation models and coupled ocean-atmosphere-biosphere models, and (4) specics-area curve models that consider all species or large aggregates of species. After outlining the different uses and limitations of these methods, we make eight primary suggestions for improving forecasts. We find that greater use of the fossil record and of modern genetic studies would improve forecasting methods. We note a Quaternary conundrum: While current empirical and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions also point to constructive synergies in the solution to the different problems.
Resumo:
PREMISE OF THE STUDY: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied. METHODS: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before flowering and whether families differ significantly in the direction of their phenological shifts. KEY RESULTS: Patterns observed among species within and across sites are mirrored among family means across sites; early-flowering families advance their FFD in response to warming more than late-flowering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here. CONCLUSIONS: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-flowering families (and the absence of early-flowering families not sensitive to temperature) may reflect plasticity in flowering time, which may be adaptive in environments where early-season conditions are highly variable among years.
Resumo:
In liberalized electricity markets, generation Companies must build an hourly bidthat is sent to the market operator. The price at which the energy will be paid is unknown during the bidding process and has to be forecast. In this work we apply forecasting factor models to this framework and study its suitability.