Forecasting with missing data: Application to a real case
Contribuinte(s) |
Universitat Pompeu Fabra. Departament d'Economia i Empresa |
---|---|
Data(s) |
15/09/2005
|
Resumo |
This paper presents a comparative analysis of linear and mixed modelsfor short term forecasting of a real data series with a high percentage of missing data. Data are the series of significant wave heights registered at regular periods of three hours by a buoy placed in the Bay of Biscay.The series is interpolated with a linear predictor which minimizes theforecast mean square error. The linear models are seasonal ARIMA models and themixed models have a linear component and a non linear seasonal component.The non linear component is estimated by a non parametric regression of dataversus time. Short term forecasts, no more than two days ahead, are of interestbecause they can be used by the port authorities to notice the fleet.Several models are fitted and compared by their forecasting behavior. |
Identificador | |
Idioma(s) |
eng |
Direitos |
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
Palavras-Chave | #Statistics, Econometrics and Quantitative Methods #significant wave height #mean square error #linear interpolation #arima models #nonparametric smoothing |
Tipo |
info:eu-repo/semantics/workingPaper |