966 resultados para Dynamic air atmosphere


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear control design approach is presented in this paper for a challenging application problem of ensuring robust performance of an air-breathing engine operating at supersonic speed. The primary objective of control design is to ensure that the engine produces the required thrust that tracks the commanded thrust as closely as possible by appropriate regulation of the fuel flow rate. However, since the engine operates in the supersonic range, an important secondary objective is to ensure an optimal location of the shock in the intake for maximum pressure recovery with a sufficient margin. This is manipulated by varying the throat area of the nozzle. The nonlinear dynamic inversion technique has been successfully used to achieve both of the above objectives. In this problem, since the process is faster than the actuators, independent control designs have also been carried out for the actuators as well to assure the satisfactory performance of the system. Moreover, an extended Kalman Filter based state estimation design has been carried out both to filter out the process and sensor noises as well as to make the control design operate based on output feedback. Promising simulation results indicate that the proposed control design approach is quite successful in obtaining robust performance of the air-breathing system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important limitation of the existing IGC algorithms, is that they do not explicitly exploit the inherent time scale separation that exist in aerospace vehicles between rotational and translational motions and hence can be ineffective. To address this issue, a two-loop partial integrated guidance and control (PIGC) scheme has been proposed in this paper. In this design, the outer loop uses a recently developed, computationally efficient, optimal control formulation named as model predictive static programming. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the Dynamic inversion philosophy. Uncommonly, Six-Degree of freedom (Six-DOF) model is used directly in both the loops. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Comparative studies of PIGC with one loop IGC and conventional three loop design were carried out for engaging incoming high speed target. Simulation studies demonstrate the usefulness of this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is focused on the effects of energetic particle precipitation of solar or magnetospheric origin on the polar middle atmosphere. The energetic charged particles have access to the atmosphere in the polar areas, where they are guided by the Earth's magnetic field. The particles penetrate down to 20-100 km altitudes (stratosphere and mesosphere) ionising the ambient air. This ionisation leads to production of odd nitrogen (NOx) and odd hydrogen species, which take part in catalytic ozone destruction. NOx has a very long chemical lifetime during polar night conditions. Therefore NOx produced at high altitudes during polar night can be transported to lower stratospheric altitudes. Particular emphasis in this work is in the use of both space and ground based observations: ozone and NO2 measurements from the GOMOS instrument on board the European Space Agency's Envisat-satellite are used together with subionospheric VLF radio wave observations from ground stations. Combining the two observation techniques enabled detection of NOx enhancements throughout the middle atmosphere, including tracking the descent of NOx enhancements of high altitude origin down to the stratosphere. GOMOS observations of the large Solar Proton Events of October-November 2003 showed the progression of the SPE initiated NOx enhancements through the polar winter. In the upper stratosphere, nighttime NO2 increased by an order of magnitude, and the effect was observed to last for several weeks after the SPEs. Ozone decreases up to 60 % from the pre-SPE values were observed in the upper stratosphere nearly a month after the events. Over several weeks the GOMOS observations showed the gradual descent of the NOx enhancements to lower altitudes. Measurements from years 2002-2006 were used to study polar winter NOx increases and their connection to energetic particle precipitation. NOx enhancements were found to occur in a good correlation with both increased high-energy particle precipitation and increased geomagnetic activity. The average wintertime polar NOx was found to have a nearly linear relationship with the average wintertime geomagnetic activity. The results from this thesis work show how important energetic particle precipitation from outside the atmosphere is as a source of NOx in the middle atmosphere, and thus its importance to the chemical balance of the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) affect atmospheric chemistry and thereafter also participate in the climate change in many ways. The long-lived greenhouse gases and tropospheric ozone are the most important radiative forcing components warming the climate, while aerosols are the most important cooling component. VOCs can have warming effects on the climate: they participate in tropospheric ozone formation and compete for oxidants with the greenhouse gases thus, for example, lengthening the atmospheric lifetime of methane. Some VOCs, on the other hand, cool the atmosphere by taking part in the formation of aerosol particles. Some VOCs, in addition, have direct health effects, such as carcinogenic benzene. VOCs are emitted into the atmosphere in various processes. Primary emissions of VOC include biogenic emissions from vegetation, biomass burning and human activities. VOCs are also produced in secondary emissions from the reactions of other organic compounds. Globally, forests are the largest source of VOC entering the atmosphere. This thesis focuses on the measurement results of emissions and concentrations of VOCs in one of the largest vegetation zones in the world, the boreal zone. An automated sampling system was designed and built for continuous VOC concentration and emission measurements with a proton transfer reaction - mass spectrometer (PTR-MS). The system measured one hour at a time in three-hourly cycles: 1) ambient volume mixing-ratios of VOCs in the Scots-pine-dominated boreal forest, 2) VOC fluxes above the canopy, and 3) VOC emissions from Scots pine shoots. In addition to the online PTR-MS measurements, we determined the composition and seasonality of the VOC emissions from a Siberian larch with adsorbent samples and GC-MS analysis. The VOC emissions from Siberian larch were reported for the fist time in the literature. The VOC emissions were 90% monoterpenes (mainly sabinene) and the rest sesquiterpenes (mainly a-farnesene). The normalized monoterpene emission potentials were highest in late summer, rising again in late autumn. The normalized sesquiterpene emission potentials were also highest in late summer, but decreased towards the autumn. The emissions of mono- and sesquiterpenes from the deciduous Siberian larch, as well as the emissions of monoterpenes measured from the evergreen Scots pine, were well described by the temperature-dependent algorithm. In the Scots-pine-dominated forest, canopy-scale emissions of monoterpenes and oxygenated VOCs (OVOCs) were of the same magnitude. Methanol and acetone were the most abundant OVOCs emitted from the forest and also in the ambient air. Annually, methanol and mixing ratios were of the order of 1 ppbv. The monoterpene and sum of isoprene 2-methyl-3-buten-2-ol (MBO) volume mixing-ratios were an order of magnitude lower. The majority of the monoterpene and methanol emissions from the Scots-pinedominated forest were explained by emissions from Scots pine shoots. The VOCs were divided into three classes based on the dynamics of the summer-time concentrations: 1) reactive compounds with local biological, anthropogenic or chemical sources (methanol, acetone, butanol and hexanal), 2) compounds whose emissions are only temperaturedependent (monoterpenes), 3) long-lived compounds (benzene, acetaldehyde). Biogenic VOC (methanol, acetone, isoprene MBO and monoterpene) volume mixing-ratios had clear diurnal patterns during summer. The ambient mixing ratios of other VOCs did not show this behaviour. During winter we did not observe systematical diurnal cycles for any of the VOCs. Different sources, removal processes and turbulent mixing explained the dynamics of the measured mixing-ratios qualitatively. However, quantitative understanding will require longterm emission measurements of the OVOCs and the use of comprehensive chemistry models. Keywords: Hydrocarbons, VOC, fluxes, volume mixing-ratio, boreal forest

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homogencous upper air data for 50 years (1949-1998) from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project, sea surface temperatures and sea level pressure are used to bring out the three dimensional structure of two dominant decadal/multi-decadal variations in the tropics. The global three dimensional modes represent generalized forms of inter-decadal modes studied earlier only with surface data. In the vertical, both modes show approximate first baroclinic structures over the tropics. The Walker circulation associated with the multidecadal mode has a wavenumber two structure in the zonal direction. It is shown that the magnitude of major ascending and descending motions associated with the multi-decadal Hadley and Walker circulations, are comparable to those associated with the dominant inter-annual mode. Implications of these large scale global circulations associated with the low frequency oscillations in modulating regional climate on a inter-annual time scale are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a novel nanoparticle tracking based interface microrheology technique to perform in situ studies on confined complex fluids. To demonstrate the power of this technique, we show, for the first time, how in situ glass formation in polymers confined at air-water interface can be directly probed by monitoring variation of the mean square displacement of embedded nanoparticles as a function of surface density. We have further quantified the appearance of dynamic heterogeneity and hence vitrification in polymethyl methacrylate monolayers above a certain surface density, through the variation of non-Gaussian parameter of the probes. (C) 2010 American Institute of Physics. [doi:10.1063/1.3471584].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosol particles play an important role in the Earth s atmosphere and in the climate system: they scatter and absorb solar radiation, facilitate chemical processes, and serve as seeds for cloud formation. Secondary new particle formation (NPF) is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapors participating in this process are, however, not truly understood. In order to fully explain atmospheric NPF and subsequent growth, we need to measure directly the very initial steps of the formation processes. This thesis investigates the possibility to study atmospheric particle formation using a recently developed Neutral cluster and Air Ion Spectrometer (NAIS). First, the NAIS was calibrated and intercompared, and found to be in good agreement with the reference instruments both in the laboratory and in the field. It was concluded that NAIS can be reliably used to measure small atmospheric ions and particles directly at the sizes where NPF begins. Second, several NAIS systems were deployed simultaneously at 12 European measurement sites to quantify the spatial and temporal distribution of particle formation events. The sites represented a variety of geographical and atmospheric conditions. The NPF events were detected using NAIS systems at all of the sites during the year-long measurement period. Various particle formation characteristics, such as formation and growth rates, were used as indicators of the relevant processes and participating compounds in the initial formation. In a case of parallel ion and neutral cluster measurements, we also estimated the relative contribution of ion-induced and neutral nucleation to the total particle formation. At most sites, the particle growth rate increased with the increasing particle size indicating that different condensing vapors are participating in the growth of different-sized particles. The results suggest that, in addition to sulfuric acid, organic vapors contribute to the initial steps of NPF and to the subsequent growth, not just later steps of the particle growth. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. The results infer that the ion-induced nucleation has a minor contribution to particle formation in the boundary layer in most of the environments. These results give tools to better quantify the aerosol source provided by secondary NPF in various environments. The particle formation characteristics determined in this thesis can be used in global models to assess NPF s climatic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosol particles have effect on climate, visibility, air quality and human health. However, the strength of which aerosol particles affect our everyday life is not well described or entirely understood. Therefore, investigations of different processes and phenomena including e.g. primary particle sources, initial steps of secondary particle formation and growth, significance of charged particles in particle formation, as well as redistribution mechanisms in the atmosphere are required. In this work sources, sinks and concentrations of air ions (charged molecules, cluster and particles) were investigated directly by measuring air molecule ionising components (i.e. radon activity concentrations and external radiation dose rates) and charged particle size distributions, as well as based on literature review. The obtained results gave comprehensive and valuable picture of the spatial and temporal variation of the air ion sources, sinks and concentrations to use as input parameters in local and global scale climate models. Newly developed air ion spectrometers (Airel Ltd.) offered a possibility to investigate atmospheric (charged) particle formation and growth at sub-3 nm sizes. Therefore, new visual classification schemes for charged particle formation events were developed, and a newly developed particle growth rate method was tested with over one year dataset. These data analysis methods have been widely utilised by other researchers since introducing them. This thesis resulted interesting characteristics of atmospheric particle formation and growth: e.g. particle growth may sometimes be suppressed before detection limit (~ 3 nm) of traditional aerosol instruments, particle formation may take place during daytime as well as in the evening, growth rates of sub-3 nm particles were quite constant throughout the year while growth rates of larger particles (3-20 nm in diameter) were higher during summer compared to winter. These observations were thought to be a consequence of availability of condensing vapours. The observations of this thesis offered new understanding of the particle formation in the atmosphere. However, the role of ions in particle formation, which is not well understood with current knowledge, requires further research in future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the effect of vacuum sealing the backside cavity of a Capacitive Micromachined Ultrasonic Transducer (CMUT). The presence or absence of air inside the cavity has a marked effect upon the system parameters, such as the natural frequency, damping, and the pull-in voltage. The presence of vacuum inside the cavity of the device causes a reduction in the effective gap height which leads to a reduction in the pull-in voltage. We carry out ANSYS simulations to quantify this reduction. The presence of vacuum inside the cavity of the device causes stress stiffening of the membrane, which changes the natural frequency of the device. A prestressed modal analysis is carried out to determine the change in natural frequency due to stress stiffening. The equivalent circuit method is used to evaluate the performance of the device in the receiver mode. The lumped parameters of the device are obtained and an equivalent circuit model of the device is constructed to determine the open circuit receiving sensitivity of the device. The effect of air in the cavity is included by incorporating an equivalent compliance and an equivalent resistance in the equivalent circuit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the near surface characteristics and vertical variations based on the observations made at 17.5degreesN and 89degreesE from ORV Sagar Kanya in the north Bay of Bengal during the Bay of Bengal Monsoon Experiment (BOBMEX) carried out in July-August 1999. BOBMEX captured both the active and weak phases of convection. SST remained above the convection threshold throughout the BOBMEX. While the response of the SST to atmospheric forcing was clearly observed, the response of the atmosphere to SST changes was not clear. SST decreased during periods of large scale precipitation, and increased during a weak phase of convection. It is shown that the latent heat flux at comparable wind speeds was about 25-50% lower over the Bay during BOBMEX compared to that over the Indian Ocean during other seasons and tropical west Pacific. On the other hand, the largest variations in the surface daily net heat flux are observed over the Bay during BOBMEX. SST predicted using observed surface fluxes showed that 1-D heat balance model works sometime but not always, and horizontal advection is important. The high resolution Vaisala radiosondes launched during BOBMEX could clearly bring out the changes in the vertical structure of the atmosphere between active and weak phases of convection. Convective Available Potential Energy of the surface air decreased,by 2-3 kJ kg(-1) following convection, and recovered in a time period of one or two days. The mid tropospheric relative humidity and water vapor content, and wind direction show the major changes between the active and weak phases of convection.