194 resultados para Dwell
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Insulin resistance is a common risk factor in chronic kidney disease patients contributing to the high cardiovascular burden, even in the absence of diabetes. Glucose-based peritoneal dialysis (PD) solutions are thought to intensify insulin resistance due to the continuous glucose absorption from the peritoneal cavity. The aim of our study was to analyse the effect of the substitution of glucose for icodextrin on insulin resistance in non-diabetic PD patients in a multicentric randomized clinical trial. This was a multicenter, open-label study with balanced randomization (1:1) and two parallel-groups. Inclusion criteria were non-diabetic adult patients on automated peritoneal dialysis (APD) for at least 3 months on therapy prior to randomization. Patients assigned to the intervention group were treated with 2L of icodextrin 7.5%, and the control group with glucose 2.5% during the long dwell and, at night in the cycler, with a prescription of standard glucose-based PD solution only in both groups. The primary end-point was the change in insulin resistance measured by homeostatic model assessment (HOMA) index at 90 days. Sixty patients were included in the intervention (n = 33) or the control (n = 27) groups. There was no difference between groups at baseline. After adjustment for pre-intervention HOMA index levels, the group treated with icodextrin had the lower post-intervention levels at 90 days in both intention to treat [1.49 (95% CI: 1.23-1.74) versus 1.89 (95% CI: 1.62-2.17)], (F = 4.643, P = 0.03, partial η(2) = 0.078); and the treated analysis [1.47 (95% CI: 1.01-1.84) versus 2.18 (95% CI: 1.81-2.55)], (F = 7.488, P = 0.01, partial η(2) = 0.195). The substitution of glucose for icodextrin for the long dwell improved insulin resistance measured by HOMA index in non-diabetic APD patients.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Abstract Background Physical attributes of the places in which people live, as well as their perceptions of them, may be important health determinants. The perception of place in which people dwell may impact on individual health and may be a more telling indicator for individual health than objective neighborhood characteristics. This paper aims to evaluate psychometric and ecometric properties of a scale on the perceptions of neighborhood problems in adults from Florianopolis, Southern Brazil. Methods Individual, census tract level (per capita monthly familiar income) and neighborhood problems perception (physical and social disorders) variables were investigated. Multilevel models (items nested within persons, persons nested within neighborhoods) were run to assess ecometric properties of variables assessing neighborhood problems. Results The response rate was 85.3%, (1,720 adults). Participants were distributed in 63 census tracts. Two scales were identified using 16 items: Physical Problems and Social Disorder. The ecometric properties of the scales satisfactory: 0.24 to 0.28 for the intra-class correlation and 0.94 to 0.96 for reliability. Higher values on the scales of problems in the physical and social domains were associated with younger age, more length of time residing in the same neighborhood and lower census tract income level. Conclusions The findings support the usefulness of these scales to measure physical and social disorder problems in neighborhoods.
Resumo:
Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.
Resumo:
The effect of process parameters on the creep-fatigue behavior of a hot-work tool steel for aluminum extrusion die was investigated through a technological test in which the specimen geometry resembled the mandrel of a hollow extrusion die. Tests were performed on a Gleeble thermomechanical simulator by heating the specimen using jouleâs effect and by applying cyclic loading up to 6.30 h or till specimen failure. Displacements during the tests at 380, 490, 540 and 580°C and under the average stresses of 400, 600 and 800 MPa were determined. In the first set of test a dwell time of 3 min was introduced during each of the tests to understand the creep behavior. The results showed that the test could indeed physically simulate the cyclic loading on the hollow die during extrusion and reveal all the mechanisms of creep-fatigue interaction. In the second set a pure fatigue laod were induced and in the third set a static creep load were induced in the specimens. Furher type of tests, finite element and microstructural analysis were presented.
Resumo:
Non-Equilibrium Statistical Mechanics is a broad subject. Grossly speaking, it deals with systems which have not yet relaxed to an equilibrium state, or else with systems which are in a steady non-equilibrium state, or with more general situations. They are characterized by external forcing and internal fluxes, resulting in a net production of entropy which quantifies dissipation and the extent by which, by the Second Law of Thermodynamics, time-reversal invariance is broken. In this thesis we discuss some of the mathematical structures involved with generic discrete-state-space non-equilibrium systems, that we depict with networks in all analogous to electrical networks. We define suitable observables and derive their linear regime relationships, we discuss a duality between external and internal observables that reverses the role of the system and of the environment, we show that network observables serve as constraints for a derivation of the minimum entropy production principle. We dwell on deep combinatorial aspects regarding linear response determinants, which are related to spanning tree polynomials in graph theory, and we give a geometrical interpretation of observables in terms of Wilson loops of a connection and gauge degrees of freedom. We specialize the formalism to continuous-time Markov chains, we give a physical interpretation for observables in terms of locally detailed balanced rates, we prove many variants of the fluctuation theorem, and show that a well-known expression for the entropy production due to Schnakenberg descends from considerations of gauge invariance, where the gauge symmetry is related to the freedom in the choice of a prior probability distribution. As an additional topic of geometrical flavor related to continuous-time Markov chains, we discuss the Fisher-Rao geometry of nonequilibrium decay modes, showing that the Fisher matrix contains information about many aspects of non-equilibrium behavior, including non-equilibrium phase transitions and superposition of modes. We establish a sort of statistical equivalence principle and discuss the behavior of the Fisher matrix under time-reversal. To conclude, we propose that geometry and combinatorics might greatly increase our understanding of nonequilibrium phenomena.
Resumo:
By pulling and releasing the tension on protein homomers with the Atomic Force Miscroscope (AFM) at different pulling speeds, dwell times and dwell distances, the observed force-response of the protein can be fitted with suitable theoretical models. In this respect we developed mathematical procedures and open-source computer codes for driving such experiments and fitting Bell’s model to experimental protein unfolding forces and protein folding frequencies. We applied the above techniques to the study of proteins GB1 (the B1 IgG-binding domain of protein G from Streptococcus) and I27 (a module of human cardiac titin) in aqueous solutions of protecting osmolytes such as dimethyl sulfoxide (DMSO), glycerol and trimethylamine N-oxide (TMAO). In order to get a molecular understanding of the experimental results we developed an Ising-like model for proteins that incorporates the osmophobic nature of their backbone. The model benefits from analytical thermodynamics and kinetics amenable to Monte-Carlo simulation. The prevailing view used to be that small protecting osmolytes bridge the separating beta-strands of proteins with mechanical resistance, presumably shifting the transition state to significantly higher distances that correlate with the molecular size of the osmolyte molecules. Our experiments showed instead that protecting osmolytes slow down protein unfolding and speed-up protein folding at physiological pH without shifting the protein transition state on the mechanical reaction coordinate. Together with the theoretical results of the Ising-model, our results lend support to the osmophobic theory according to which osmolyte stabilisation is a result of the preferential exclusion of the osmolyte molecules from the protein backbone. The results obtained during this thesis work have markedly improved our understanding of the strategy selected by Nature to strengthen protein stability in hostile environments, shifting the focus from hypothetical protein-osmolyte interactions to the more general mechanism based on the osmophobicity of the protein backbone.
Resumo:
Oggetto di questa tesi è l’analisi delle modalità di rappresentazione del trauma nel romanzo del Novecento e, in particolare, nelle opere di Samuel Beckett, Georges Perec e Agota Kristof. Fondamento dello studio sarà una disamina dei procedimenti linguistici e narrativi di rappresentazione del trauma nelle prose degli autori citati, al fine tracciare le linee di un’estetica in grado di descrivere le caratteristiche peculiari delle narrazioni in cui la dimensione antinarrativa della memoria traumatica assume il ruolo di principio estetico guida. L’analisi si soffermerà sulla cruciale relazione esistente, in tutti e tre gli autori, tra rappresentazione del trauma e sviluppo di strategie narrativi definibili come “denegative”. L’analisi dei testi letterari è condotta sulla base del corpus critico dei Trauma Studies, dell’ermeneutica della narrazione di stampo ricœuriano e della teoria del linguaggio psicoanalitica e affiancata, ove possibile, da uno studio filologico-genetico dei materiali d’autore. Alla luce di tali premesse, intendo rivalutare il carattere rappresentativo e testimoniale della letteratura del secolo scorso, in contrasto con la consuetudine a vedere nel romanzo novecentesco il trionfo dell’antimimesi e il declino del racconto. Dal momento che le narrazioni traumatiche si costruiscono intorno e attraverso i vuoti di linguaggio, la tesi è che siano proprio questi vuoti linguistici e narrativi (amnesie, acronie, afasie, lapsus, omissioni e mancanze ancora più sofisticate come nel caso di Perec) a rappresentare, in modo mimetico, la realtà apparentemente inaccessibile del trauma. Si tenterà di dimostrare come questi nuovi canoni di rappresentazione non denuncino l’impossibilità del racconto, bensì una sfida al silenzio, celata in più sottili e complesse convenzioni narrative, le quali mantengono un rapporto di filiazione indiretto − per una via che potremmo definire denegativa − con quelle del romanzo tradizionale.
Resumo:
The aim of present study is to define the general framework of Merluccius merluccius population structure, to estimate the growth rate and to assess the recruitment dynamics of juveniles from Northern and Central Adriatic, through otoliths analysis. The otoliths of hake specimens collected during the MedITS trawl survey in the 2012 in GSA 17, were cleaned and 102 otoliths out of 506 were embedded, sectioned, grindined and polished to obtain frontal and sagittal sections. The whole sample were analysed under stereomicroscope and optical microscope, with camera and connected to PC provided of an image analyses program. The frequency analysis of size classes and age revealed that the species is dominated by hake with >200mm TL and > one year old. The fish average size of M. merluccius at the end of the first year of life is about 199 mm TL. Allometrics analyses between fish TL and Feret (major axis), MiniFeret (minor axis), Area, Perimeter, showed a direct proportionality among lengths. Among the 88 otoliths sections analysed, the number of daily increments read ranged from 86 to 206, within 55 and 175mm TL range. The age estimate ranged from about 2-3 to 9 months and the growth rate from 20.99 to 27.15mm TL. The hatch-date distribution, obtained by back calculation, showed that the hatching occurs in November-March. In conclusion, strong preventive measures are needed for hake adults because the success of this species seems to be linked to deep water ecosystem protection where big spawners dwell.
Resumo:
The current status of child and adolescent psychiatric genetics appears promising in light of the initiation of genome-wide association studies (GWAS) for diverse polygenic disorders and the molecular elucidation of monogenic Rett syndrome, for which recent functional studies provide hope for pharmacological treatment strategies. Within the last 50 years, tremendous progress has been made in linking genetic variation to behavioral phenotypes and psychiatric disorders. We summarize the major findings of the Human Genome Project and dwell on largely unsuccessful candidate gene and linkage studies. GWAS for the first time offer the possibility to detect single nucleotide polymorphisms and copy number variants without a priori hypotheses as to their molecular etiology. At the same time it is becoming increasingly clear that very large sample sizes are required in order to enable genome wide significant findings, thus necessitating further large-scaled ascertainment schemes for the successful elucidation of the molecular genetics of childhood and adolescent psychiatric disorders. We conclude by reflecting on different scenarios for future research into the molecular basis of early onset psychiatric disorders. This review represents the introductory article of this special issue of the European Child and Adolescent Psychiatry.
Resumo:
BACKGROUND: Although visuospatial deficits have been linked with freezing of gait (FOG) in Parkinson's disease (PD), the specific effects of dorsal and ventral visual pathway dysfunction on FOG is not well understood. METHOD: We assessed visuospatial function in FOG using an angle discrimination test (dorsal visual pathway bias) and overlapping figure test (ventral visual pathway bias), and recorded overall response time, mean fixation duration and dwell time. Covariate analysis was conducted controlling for disease duration, motor severity, contrast sensitivity and attention with Bonferroni adjustments for multiple comparisons. RESULTS: Twenty seven people with FOG, 27 people without FOG and 24 controls were assessed. Average fixation duration during angle discrimination distinguished freezing status: [F (1, 43) = 4.77 p < 0.05] (1-way ANCOVA). CONCLUSION: Results indicate a preferential dysfunction of dorsal occipito-parietal pathways in FOG, independent of disease severity, attentional deficit, and contrast sensitivity.