910 resultados para Discrete time pricing model
Resumo:
Le contenu de cette thèse est divisé de la façon suivante. Après un premier chapitre d’introduction, le Chapitre 2 est consacré à introduire aussi simplement que possible certaines des théories qui seront utilisées dans les deux premiers articles. Dans un premier temps, nous discuterons des points importants pour la construction de l’intégrale stochastique par rapport aux semimartingales avec paramètre spatial. Ensuite, nous décrirons les principaux résultats de la théorie de l’évaluation en monde neutre au risque et, finalement, nous donnerons une brève description d’une méthode d’optimisation connue sous le nom de dualité. Les Chapitres 3 et 4 traitent de la modélisation de l’illiquidité et font l’objet de deux articles. Le premier propose un modèle en temps continu pour la structure et le comportement du carnet d’ordres limites. Le comportement du portefeuille d’un investisseur utilisant des ordres de marché est déduit et des conditions permettant d’éliminer les possibilités d’arbitrages sont données. Grâce à la formule d’Itô généralisée il est aussi possible d’écrire la valeur du portefeuille comme une équation différentielle stochastique. Un exemple complet de modèle de marché est présenté de même qu’une méthode de calibrage. Dans le deuxième article, écrit en collaboration avec Bruno Rémillard, nous proposons un modèle similaire mais cette fois-ci en temps discret. La question de tarification des produits dérivés est étudiée et des solutions pour le prix des options européennes de vente et d’achat sont données sous forme explicite. Des conditions spécifiques à ce modèle qui permettent d’éliminer l’arbitrage sont aussi données. Grâce à la méthode duale, nous montrons qu’il est aussi possible d’écrire le prix des options européennes comme un problème d’optimisation d’une espérance sur en ensemble de mesures de probabilité. Le Chapitre 5 contient le troisième article de la thèse et porte sur un sujet différent. Dans cet article, aussi écrit en collaboration avec Bruno Rémillard, nous proposons une méthode de prévision des séries temporelles basée sur les copules multivariées. Afin de mieux comprendre le gain en performance que donne cette méthode, nous étudions à l’aide d’expériences numériques l’effet de la force et la structure de dépendance sur les prévisions. Puisque les copules permettent d’isoler la structure de dépendance et les distributions marginales, nous étudions l’impact de différentes distributions marginales sur la performance des prévisions. Finalement, nous étudions aussi l’effet des erreurs d’estimation sur la performance des prévisions. Dans tous les cas, nous comparons la performance des prévisions en utilisant des prévisions provenant d’une série bivariée et d’une série univariée, ce qui permet d’illustrer l’avantage de cette méthode. Dans un intérêt plus pratique, nous présentons une application complète sur des données financières.
Resumo:
This thesis entitled Reliability Modelling and Analysis in Discrete time Some Concepts and Models Useful in the Analysis of discrete life time data.The present study consists of five chapters. In Chapter II we take up the derivation of some general results useful in reliability modelling that involves two component mixtures. Expression for the failure rate, mean residual life and second moment of residual life of the mixture distributions in terms of the corresponding quantities in the component distributions are investigated. Some applications of these results are also pointed out. The role of the geometric,Waring and negative hypergeometric distributions as models of life lengths in the discrete time domain has been discussed already. While describing various reliability characteristics, it was found that they can be often considered as a class. The applicability of these models in single populations naturally extends to the case of populations composed of sub-populations making mixtures of these distributions worth investigating. Accordingly the general properties, various reliability characteristics and characterizations of these models are discussed in chapter III. Inference of parameters in mixture distribution is usually a difficult problem because the mass function of the mixture is a linear function of the component masses that makes manipulation of the likelihood equations, leastsquare function etc and the resulting computations.very difficult. We show that one of our characterizations help in inferring the parameters of the geometric mixture without involving computational hazards. As mentioned in the review of results in the previous sections, partial moments were not studied extensively in literature especially in the case of discrete distributions. Chapters IV and V deal with descending and ascending partial factorial moments. Apart from studying their properties, we prove characterizations of distributions by functional forms of partial moments and establish recurrence relations between successive moments for some well known families. It is further demonstrated that partial moments are equally efficient and convenient compared to many of the conventional tools to resolve practical problems in reliability modelling and analysis. The study concludes by indicating some new problems that surfaced during the course of the present investigation which could be the subject for a future work in this area.
Resumo:
El presente trabajo se enfoca en el análisis de las acciones de Ecopetrol, empresa representativa del mercado de Extracción de Petróleo y Gas natural en Colombia (SP&G), durante el periodo, del 22 de mayo de 2012 al 30 de agosto de 2013. Durante este espacio de tiempo la acción sufrió una serie de variaciones en su precio las cuales se relacionaban a la nueva emisión de acciones que realizo la Compañía. Debido a este cambio en el comportamiento del activo se generaron una serie de interrogantes sobre, (i) la reacción del mercado ante diferentes sucesos ocurridos dentro de las firmas y en su entorno (ii) la capacidad de los modelos financieros de predecir y entender las posibles reacciones observadas de los activos (entendidos como deuda). Durante el desarrollo del presente trabajo se estudiará la pertinencia del mismo, en línea con los objetivos y desarrollos de la Escuela de Administración de la Universidad del Rosario. Puntualmente en temas de Perdurabilidad direccionados a la línea de Gerencia. Donde el entendimiento de la deuda como parte del funcionamiento actual y como variable determinante para el comportamiento futuro de las organizaciones tiene especial importancia. Una vez se clarifica la relación entre el presente trabajo y la Universidad, se desarrollan diferentes conceptos y teorías financieras que han permitido conocer y estudiar de manera más específica el mercado, con el objetivo de reducir los riesgos de las inversiones realizadas. Éste análisis se desarrolla en dos partes: (i) modelos de tiempo discreto y (ii) modelos de tiempo continúo. Una vez se tiene mayor claridad sobre los modelos estudiados hasta el momento se realiza el respectivo análisis de los datos mediante modelos de caos y análisis recurrente los cuales nos permiten entender que las acciones se comportan de manera caótica pero que establecen ciertas relaciones entre los precios actuales y los históricos, desarrollando comportamientos definidos entre los precios, las cantidades, el entorno macroeconómico y la organización. De otra parte, se realiza una descripción del mercado de petróleo en Colombia y se estudia a Ecopetrol como empresa y eje principal del mercado descrito en el país. La compañía Ecopetrol es representativa debido a que es uno de los mayores aportantes fiscales del país, pues sus ingresos se desprenden de bienes que se encuentran en el subsuelo por lo que la renta petrolera incluye impuestos a la producción transformación y consumo (Ecopetrol, 2003). Por último, se presentan los resultados del trabajo, así como el análisis que da lugar para presentar ciertas recomendaciones a partir de lo observado.
Resumo:
One of the primary goals of the Center for Integrated Space Weather Modeling (CISM) effort is to assess and improve prediction of the solar wind conditions in near‐Earth space, arising from both quasi‐steady and transient structures. We compare 8 years of L1 in situ observations to predictions of the solar wind speed made by the Wang‐Sheeley‐Arge (WSA) empirical model. The mean‐square error (MSE) between the observed and model predictions is used to reach a number of useful conclusions: there is no systematic lag in the WSA predictions, the MSE is found to be highest at solar minimum and lowest during the rise to solar maximum, and the optimal lead time for 1 AU solar wind speed predictions is found to be 3 days. However, MSE is shown to frequently be an inadequate “figure of merit” for assessing solar wind speed predictions. A complementary, event‐based analysis technique is developed in which high‐speed enhancements (HSEs) are systematically selected and associated from observed and model time series. WSA model is validated using comparisons of the number of hit, missed, and false HSEs, along with the timing and speed magnitude errors between the forecasted and observed events. Morphological differences between the different HSE populations are investigated to aid interpretation of the results and improvements to the model. Finally, by defining discrete events in the time series, model predictions from above and below the ecliptic plane can be used to estimate an uncertainty in the predicted HSE arrival times.
Resumo:
Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.
Resumo:
We describe a Bayesian method for investigating correlated evolution of discrete binary traits on phylogenetic trees. The method fits a continuous-time Markov model to a pair of traits, seeking the best fitting models that describe their joint evolution on a phylogeny. We employ the methodology of reversible-jump ( RJ) Markov chain Monte Carlo to search among the large number of possible models, some of which conform to independent evolution of the two traits, others to correlated evolution. The RJ Markov chain visits these models in proportion to their posterior probabilities, thereby directly estimating the support for the hypothesis of correlated evolution. In addition, the RJ Markov chain simultaneously estimates the posterior distributions of the rate parameters of the model of trait evolution. These posterior distributions can be used to test among alternative evolutionary scenarios to explain the observed data. All results are integrated over a sample of phylogenetic trees to account for phylogenetic uncertainty. We implement the method in a program called RJ Discrete and illustrate it by analyzing the question of whether mating system and advertisement of estrus by females have coevolved in the Old World monkeys and great apes.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.
Resumo:
Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.
Resumo:
On using McKenzie’s taxonomy of optimal accumulation in the longrun, we report a “uniform turnpike” theorem of the third kind in a model original to Robinson, Solow and Srinivasan (RSS), and further studied by Stiglitz. Our results are presented in the undiscounted, discrete-time setting emphasized in the recent work of Khan-Mitra, and they rely on the importance of strictly concave felicity functions, or alternatively, on the value of a “marginal rate of transformation”, ξσ, from one period to the next not being unity. Our results, despite their specificity, contribute to the methodology of intertemporal optimization theory, as developed in economics by Ramsey, von Neumann and their followers.
Resumo:
This paper presents results of a pricing system to compute the option adjusted spread ("DAS") of Eurobonds issued by Brazilian firms. The system computes the "DAS" over US treasury rates taktng imo account the embedded options present on these bonds. These options can be calls ("callable bond"), puts ("putable bond") or combinations ("callable and putable bond"). The pricing model takes into account the evolution of the term structure along time, is compatible with the observable market term structure and is able to compute risk measures such as duration and convexity, and pricing and hedging of options on these bonds. Examples show the ejJects of the embedded options on the spread and risk measures as well as the ejJects on the spread due to variations on the volatility parameters ofthe short rate.
Resumo:
The paper analyzes a two period general equilibrium model with individual risk and moral hazard. Each household faces two individual states of nature in the second period. These states solely differ in the household's vector of initial endowments, which is strictly larger in the first state (good state) than in the second state (bad state). In the first period households choose a non-observable action. Higher leveis of action give higher probability of the good state of nature to occur, but lower leveIs of utility. Households have access to an insurance market that allows transfer of income across states of oature. I consider two models of financiaI markets, the price-taking behavior model and the nonlínear pricing modelo In the price-taking behavior model suppliers of insurance have a belief about each household's actíon and take asset prices as given. A variation of standard arguments shows the existence of a rational expectations equilibrium. For a generic set of economies every equilibrium is constraíned sub-optímal: there are commodity prices and a reallocation of financiaI assets satisfying the first period budget constraint such that, at each household's optimal choice given those prices and asset reallocation, markets clear and every household's welfare improves. In the nonlinear pricing model suppliers of insurance behave strategically offering nonlinear pricing contracts to the households. I provide sufficient conditions for the existence of equilibrium and investigate the optimality properties of the modeI. If there is a single commodity then every equilibrium is constrained optimaI. Ir there is more than one commodity, then for a generic set of economies every equilibrium is constrained sub-optimaI.
Resumo:
We develop and empirically test a continuous time equilibrium model for the pricing of oil futures. The model provides a link between no-arbitrage models and expectation oriented models. It highlights the role of inventories for the identification of different pricing regimes. In an empirical study the hedging performance of our model is compared with five other one- and two-factor pricing models. The hedging problem considered is related to Metallgesellschaft´s strategy to hedge long-term forward commitments with short-term futures. The results show that the downside risk distribution of our inventory based model stochastically dominates those of the other models.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.