921 resultados para Complex problems


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grid computing is an emerging technology for providing the high performance computing capability and collaboration mechanism for solving the collaborated and complex problems while using the existing resources. In this paper, a grid computing based framework is proposed for the probabilistic based power system reliability and security analysis. The suggested name of this computing grid is Reliability and Security Grid (RSA-Grid). Then the architecture of this grid is presented. A prototype system has been built for further development of grid-based services for power systems reliability and security assessment based on probabilistic techniques, which require high performance computing and large amount of memory. Preliminary results based on prototype of this grid show that RSA-Grid can provide the comprehensive assessment results for real power systems efficiently and economically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attempting to solve the complex problems of the 21st century requires research graduates that have developed a sophisticated array of interdisciplinary teamwork and communication skills. Although universities, governments, industry and the professions have emphasised the need to break down disciplinary silos in order to produce graduates, who can respond more effectively to the needs of the knowledge economy, much of this work has centred on undergraduate programs. While there are some research higher degree students who choose to work on interdisciplinary research topics, very little has been done to develop interdisciplinary research education systematically. This paper explores the educational opportunities and dilemmas involved in developing systematic programs of interdisciplinary research activities in two research centres at the University of Queensland. Framed by Bruhn's (2000, p. 58) theoretical discourse about interdisciplinary research as 'a philosophy, an art form, an artifact, and an antidote', this paper emphasises the need for such programs to embed the development of students' interdisciplinary research skills and attitudes within their research projects. The two diverse programs also emphasise experiential, active and interactive learning techniques and are centred upon the development of students' reflective practice skills.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The law of landlord and tenant has become an increasingly complex area for both professionals and students. Apart from the double hurdle of mastering both common law principles and statutory codes, various aspects of the subject have become increasingly specialised and challenging. This new edition of Question and Answer Landlord and Tenant demonstrates that even complex problems can be explained in straightforward and inspiring terms. The authors, both experienced academics and barristers, provide detailed answers to typical questions in this difficult field. The third edition of this book has been updated in the new Question and Answer style of questions followed by commentary, bullet points and diagrams and flowcharts. It offers new questions based on the latest recommendations of the Law Commission on renting homes and the abolition of the law of forfeiture. There are new questions on the human rights dimension, the recent changes to Part II of the Landlord and Tenant Act 1954 and the substantial amendments made to leasehold enfranchisement under the Commonhold and Leasehold Reform Act 2002.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From a manufacturing perspective, the efficiency of manufacturing operations (such as process planning and production scheduling) are the key element for enhancing manufacturing competence. Process planning and production scheduling functions have been traditionally treated as two separate activities, and have resulted in a range of inefficiencies. These include infeasible process plans, non-available/overloaded resources, high production costs, long production lead times, and so on. Above all, it is unlikely that the dynamic changes can be efficiently dealt with. Despite much research has been conducted to integrate process planning and production scheduling to generate optimised solutions to improve manufacturing efficiency, there is still a gap to achieve the competence required for the current global competitive market. In this research, the concept of multi-agent system (MAS) is adopted as a means to address the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents able to solve complex problems. These agents possess their individual objectives and interact with each other to fulfil the global goal. This paper describes a novel use of an autonomous agent system to facilitate the integration of process planning and production scheduling functions to cope with unpredictable demands, in terms of uncertainties in product mix and demand pattern. The novelty lies with the currency-based iterative agent bidding mechanism to allow process planning and production scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-effective solution. This agent based system aims to achieve manufacturing competence by means of enhancing the flexibility and agility of manufacturing enterprises.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The behaviour of control functions in safety critical software systems is typically bounded to prevent the occurrence of known system level hazards. These bounds are typically derived through safety analyses and can be implemented through the use of necessary design features. However, the unpredictability of real world problems can result in changes in the operating context that may invalidate the behavioural bounds themselves, for example, unexpected hazardous operating contexts as a result of failures or degradation. For highly complex problems it may be infeasible to determine the precise desired behavioural bounds of a function that addresses or minimises risk for hazardous operation cases prior to deployment. This paper presents an overview of the safety challenges associated with such a problem and how such problems might be addressed. A self-management framework is proposed that performs on-line risk management. The features of the framework are shown in context of employing intelligent adaptive controllers operating within complex and highly dynamic problem domains such as Gas-Turbine Aero Engine control. Safety assurance arguments enabled by the framework necessary for certification are also outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the world, scientific studies increase day by day and computer programs facilitate the human’s life. Scientists examine the human’s brain’s neural structure and they try to be model in the computer and they give the name of artificial neural network. For this reason, they think to develop more complex problem’s solution. The purpose of this study is to estimate fuel economy of an automobile engine by using artificial neural network (ANN) algorithm. Engine characteristics were simulated by using “Neuro Solution” software. The same data is used in MATLAB to compare the performance of MATLAB is such a problem and show its validity. The cylinder, displacement, power, weight, acceleration and vehicle production year are used as input data and miles per gallon (MPG) are used as target data. An Artificial Neural Network model was developed and 70% of data were used as training data, 15% of data were used as testing data and 15% of data is used as validation data. In creating our model, proper neuron number is carefully selected to increase the speed of the network. Since the problem has a nonlinear structure, multi layer are used in our model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optimization of adaptive traffic signal timing is one of the most complex problems in traffic control systems. This dissertation presents a new method that applies the parallel genetic algorithm (PGA) to optimize adaptive traffic signal control in the presence of transit signal priority (TSP). The method can optimize the phase plan, cycle length, and green splits at isolated intersections with consideration for the performance of both the transit and the general vehicles. Unlike the simple genetic algorithm (GA), PGA can provide better and faster solutions needed for real-time optimization of adaptive traffic signal control. ^ An important component in the proposed method involves the development of a microscopic delay estimation model that was designed specifically to optimize adaptive traffic signal with TSP. Macroscopic delay models such as the Highway Capacity Manual (HCM) delay model are unable to accurately consider the effect of phase combination and phase sequence in delay calculations. In addition, because the number of phases and the phase sequence of adaptive traffic signal may vary from cycle to cycle, the phase splits cannot be optimized when the phase sequence is also a decision variable. A "flex-phase" concept was introduced in the proposed microscopic delay estimation model to overcome these limitations. ^ The performance of PGA was first evaluated against the simple GA. The results show that PGA achieved both faster convergence and lower delay for both under- or over-saturated traffic conditions. A VISSIM simulation testbed was then developed to evaluate the performance of the proposed PGA-based adaptive traffic signal control with TSP. The simulation results show that the PGA-based optimizer for adaptive TSP outperformed the fully actuated NEMA control in all test cases. The results also show that the PGA-based optimizer was able to produce TSP timing plans that benefit the transit vehicles while minimizing the impact of TSP on the general vehicles. The VISSIM testbed developed in this research provides a powerful tool to design and evaluate different TSP strategies under both actuated and adaptive signal control. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By integrating the research and resources of hundreds of scientists from dozens of institutions, network-level science is fast becoming one scientific model of choice to address complex problems. In the pursuit to confront pressing environmental issues such as climate change, many scientists, practitioners, policy makers, and institutions are promoting network-level research that integrates the social and ecological sciences. To understand how this scientific trend is unfolding among rising scientists, we examined how graduate students experienced one such emergent social-ecological research initiative, Integrated Science for Society and Environment, within the large-scale, geographically distributed Long Term Ecological Research (LTER) Network. Through workshops, surveys, and interviews, we found that graduate students faced challenges in how they conceptualized and practiced social-ecological research within the LTER Network. We have presented these conceptual challenges at three scales: the individual/project, the LTER site, and the LTER Network. The level of student engagement with and knowledge of the LTER Network was varied, and students faced different institutional, cultural, and logistic barriers to practicing social-ecological research. These types of challenges are unlikely to be unique to LTER graduate students; thus, our findings are relevant to other scientific networks implementing new social-ecological research initiatives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Significant advances have emerged in research related to the topic of Classifier Committees. The models that receive the most attention in the literature are those of the static nature, also known as ensembles. The algorithms that are part of this class, we highlight the methods that using techniques of resampling of the training data: Bagging, Boosting and Multiboosting. The choice of the architecture and base components to be recruited is not a trivial task and has motivated new proposals in an attempt to build such models automatically, and many of them are based on optimization methods. Many of these contributions have not shown satisfactory results when applied to more complex problems with different nature. In contrast, the thesis presented here, proposes three new hybrid approaches for automatic construction for ensembles: Increment of Diversity, Adaptive-fitness Function and Meta-learning for the development of systems for automatic configuration of parameters for models of ensemble. In the first one approach, we propose a solution that combines different diversity techniques in a single conceptual framework, in attempt to achieve higher levels of diversity in ensembles, and with it, the better the performance of such systems. In the second one approach, using a genetic algorithm for automatic design of ensembles. The contribution is to combine the techniques of filter and wrapper adaptively to evolve a better distribution of the feature space to be presented for the components of ensemble. Finally, the last one approach, which proposes new techniques for recommendation of architecture and based components on ensemble, by techniques of traditional meta-learning and multi-label meta-learning. In general, the results are encouraging and corroborate with the thesis that hybrid tools are a powerful solution in building effective ensembles for pattern classification problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays the rapid growth of urban centers, the accumulation of social and environmental demands, the relationship between public policy and increasingly complex problems accentuates the feeling that cities undergo an urban crisis. This crisis is especially characterized by its multidimensionality, which goes through economic, cultural, ethical, environmental and, above all, political issues. In order to study the core of this crisis that is manifested by the urbanization process and has in its exacerbation on the metropolitan areas was conducted conceptual and theoretical study of the meaning of sustainable development applied to the everyday reality of cities, extracting from this debate concepts, such as: sustainable territorial development, administrative sustainability and political sustainability. Looking forward to test this the practical applicability of these theoretical concepts studied, an empirical study was done on the reality of metropolitan solid waste in Natal, Rio Grande do Norte, Brasil. According to the recent theoretical debate, the waste comprises a sector of the urban environmental crisis that best represents the relationship between man and environment. Ensuring the multidimensionality of environmental issues through the “Saber Ambietal” (LEFF, 2005), was made a extensive qualitative study correlating the concepts of sustainable territorial development, metropolitan governance and “Saber Ambiental” applied on solid waste. The results point to the real challenges of municipal government in understanding the real situation, take action and change the inertia in which have operated in recent decades. The results also showed the importance of transforming environmental issues in political, in other words, struggle for ideas, ideological and ethical references.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays the rapid growth of urban centers, the accumulation of social and environmental demands, the relationship between public policy and increasingly complex problems accentuates the feeling that cities undergo an urban crisis. This crisis is especially characterized by its multidimensionality, which goes through economic, cultural, ethical, environmental and, above all, political issues. In order to study the core of this crisis that is manifested by the urbanization process and has in its exacerbation on the metropolitan areas was conducted conceptual and theoretical study of the meaning of sustainable development applied to the everyday reality of cities, extracting from this debate concepts, such as: sustainable territorial development, administrative sustainability and political sustainability. Looking forward to test this the practical applicability of these theoretical concepts studied, an empirical study was done on the reality of metropolitan solid waste in Natal, Rio Grande do Norte, Brasil. According to the recent theoretical debate, the waste comprises a sector of the urban environmental crisis that best represents the relationship between man and environment. Ensuring the multidimensionality of environmental issues through the “Saber Ambietal” (LEFF, 2005), was made a extensive qualitative study correlating the concepts of sustainable territorial development, metropolitan governance and “Saber Ambiental” applied on solid waste. The results point to the real challenges of municipal government in understanding the real situation, take action and change the inertia in which have operated in recent decades. The results also showed the importance of transforming environmental issues in political, in other words, struggle for ideas, ideological and ethical references.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.

In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.

By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.

Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.