986 resultados para Cathodic cage, duplex surface, plasma nitriding, TiN thin films,martensitic stainless steel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the molecular weights (molecular weight of polystyrene, M-w,M-PS, varying from 2.9 to 129 k) on the surface morphologies of spin-coated and annealed polystyrene/poly (methyl methacrylate) (PS/PMMA = 50/50, w/w) blend films were investigated by atomic force microscopy and X-ray photoelectron spectroscopy. For the spin-coated films, when the M-w,M-PS varied from 2.9 to 129 k, three different kinds of surface morphologies (a nanophase-separated morphology, a PMMA cellular or network-like morphology whose meshes filled with PS, a sea-island like morphology) were observed and their formation mechanisms are discussed, respectively. Upon annealing, two different morphology-evolution processes were observed. It is found that a upper PS-rich phase layer is formed when M-w,M-PS < 4 k, and this behavior is mainly attributed to the low interfacial tension between PS and PMMA component. When M-w,M-PS > 4 k, the PS-rich phase forms droplets on top of the PMMA-rich phase layer which wets the SiOx substrate. These results indicate that the surface morphology of the polymer blend films can be controlled by the polymer molecular weight and annealing conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface morphology evolution of thin poly(styrene-block-ethylene/butylenes-block-styrene) (SEBS) triblock copolymer films as a function of the copolymer concentration was investigated by means of dynamic mode atomic force microscopy. At a relatively low copolymer concentration (0.025% w/v), the periodically orientated stripes were observed. This kind of surface patterning produced in the spin-coating process has not been reported in the literature before. It has been shown by our experiment that a shearing and stretching field can cause flexible polymer coils or aggregates to orientate during the spin coatings At a copolymer concentration of 0.05% w/v, SEBS molecule aggregates form network structures in the whole film. With further increase of the copolymer concentration, a continuous film with a microphase-separated structure was visualized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable bilayer thin films of indium tin oxide (ITO) on CdS and CdS on ITO were formed for the window material of solar cells by chemical bath and sputtering methods. Scanning electron microscopy and X-ray diffraction studies have shown that both the ITO and CdS films are continuous, homogeneous, with high compactness. Measurement of the CdS film thickness across the 2 x 4 cm(2) reveals the good uniformity of these films. Four-point probe measurements show that the resistivity of a CdS film on an ITO surface is much better than that of the single CdS film The thermal stability of an ITO/CdS bilayer, interfacial reaction and optical transmittance were investigated at different annealing temperatures and environments (air, vacuum and N-2 + H-2). The results showed that the ITO/CdS bilayer film is a good window material for the CuInSe2 and CdTe cells. It is a simple method using a small amount of the cadmium compound.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural, electronic, and optical properties of amorphous and transparent zinc tin oxide films deposited on glass substrates by pulsed laser deposition (PLD) were examined for two chemical compositions of Zn:Sn=1:1 and 2:1 as a function of oxygen partial pressure PO2 used for the film deposition and annealing temperature. Different from a previous report on sputter-deposited films Chiang et al., Appl. Phys. Lett. 86, 013503 2005 , the PLD-deposited films crystallized at a lower temperature 450 °C to give crystalline ZnO and SnO2 phases. The optical band gaps Tauc gaps were 2.80−2.85 eV and almost independent of oxygen PO2 , which are smaller than those of the corresponding crystals 3.35−3.89 eV . Films deposited at low PO2 showed significant subgap absorptions, which were reduced by postthermal annealing. Hall mobility showed steep increases when carrier concentration exceeded threshold values and the threshold value depended on the film chemical composition. The films deposited at low PO2 2 Pa had low carrier concentrations. It is thought that the low PO2 produced high-density oxygen deficiencies and generated electrons, but these electrons were trapped in localized states, which would be observed as the subgap absorptions. Similar effects were observed for 600 °C crystallized films and their resistivities were increased by formation of subgap states due to the reducing high-temperature condition. High carrier concentrations and large mobilities were obtained in an intermediate PO2 region for the as-deposited films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly conductive and transparent thin films of amorphous zinc indium tin oxide are prepared at room temperature by co-sputtering of zinc 10 oxide and indium tin oxide. Cationic contents in the films are varied by adjusting the power to the sputtering targets. Optical transmission study of 11 films showed an average transmission greater than 85% across the visible region. Maximum conductivity of 6×102 S cm−1 is obtained for Zn/In/ 12 Sn atomic ratio 0.4/0.4/0.2 in the film. Hall mobility strongly depends on carrier concentration and maximum mobility obtained is 18 cm2 V−1 s−1 13 at a carrier concentration of 2.1×1020 cm−3. Optical band gap of films varied from 3.44 eV to 3 eV with the increase of zinc content in the film 14 while the refractive index of the films at 600 nm is about 2.0.