929 resultados para CARBAMIDE PEROXIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel (main chain)-(side chain) vinyl polyperoxide, poly(alpha-(tert-butylperoxymethyl)styrene peroxide) (MCSCPP), an alternating copolymer of alpha-(tert-butylperoxymethyl)styrene (TPMS) and oxygen, has been synthesized by the oxidative polymerization of TPMS. The MCSCPP was characterized by H-1 NMR, C-13 NMR, IR, DSC, EI-MS, and GC-MS studies. The overall activation energy (E(a)) for the degradation of MCSCPP was found to be 27 kcal/mol. Formaldehyde and alpha-(tert-butylperoxy)acetophenone (TPAP) were identified as the primary degradation products of MCSCPP; TPAP was found to undergo further degradation. The side chain peroxy groups were found to be thermally more stable than those in the main chain. Polymerization of styrene in the presence of MCSCPP as initiator, at 80 degrees C, follows classical kinetics. The presence of peroxy segments in the polystyrene chain was confirmed by both H-1 NMR and thermal decomposition studies. Interestingly, unlike other vinyl polyperoxides, the MCSCPP initiator shows an increase in molecular weight with conversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinyl acetate peroxide) (PVACP) was prepared from vinyl acetate by free-radical-initiated oxidative polymerization. The polyperoxide was isolated and characterized by different spectroscopic methods. The extreme instability of PVACP was demonstrated by FTIR spectroscopy. The H-1- and C-13-NMR studies show the irregularities in the polyperoxide chain due to the cleavage reactions of the propagating peroxide radical. Thermal degradation studies using differential scanning calorimetry revealed that PVACP degrades at a lower temperature and the heat of degradation is in the same range as reported for other vinyl polyperoxides. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(alpha-methylstyrene peroxide) has been synthesized and characterized spectroscopically. The H-1 and C-13 NMR spectra are shown to reveal the stereochemical features and the endgroups in the peroxide chain. The preliminary studies on the chain dynamics of the polyperoxide chain has been done by measuring the spin-lattice relaxation times (T-1) of the main chain as well as the side chain carbons. It has been shown from the dependence of the spin-lattice relaxation times that the polyperoxide chain is more flexible compared to the corresponding hydrocarbon-backbone analog.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Co(II)TPP(Py) complex was used as an efficient dioxygen carrier for the radical polymerization of 1,1-diphenylethylene (DPE), which has a low ceiling temperature, at ambient temperature and low oxygen pressure. The mechanism of polymerization is discussed' on the basis of kinetic data, W-vis, ESR, and H-1 NMR studies. The rate of polymerization (RP) and number-average molecular weights (M) of poly(1,1-diphenylethylene peroxide) (PDPEP) are higher and the polydispersity is lower than in 2,2'-azobis(isobutyronitrile) (AIBN) initiated polymerization. PDPEP was further. used as a macroinitiator for the polymerization of MMA. The polymerization obeys classical kinetics. The K-2 value of the PDPEP has been determined from the slope of R-P(2) VS [M](2)[I], which reveals that it can also be used at higher temperature for the polymerization. An "active" PMMA was also synthesized, containing initiating segments in the polymer backbone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of a series of para-substituted poly(styrene peroxide)s with electron-donating [CH3, C(CH3)(3)] and electron-attracting (Br) substitutents are investigated by thermogravimetric analysis (TGA). The results indicate that the Hammett relationship can describe quantitatively the trends in maximum rate of polymer decomposition (T-max) observed in TGA and thus thermostability of substituted poly(styrene peroxide)s depends only on the electronic nature of substituents and their ability to stabilize macroradicals formed during chain scission. The experimental results are also substantiated by thermochemical calculations. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel (main-chain)-(side-chain) vinyl polyperoxide, poly(dipentene peroxide)(PDP), an alternating copolymer of dipentene (DP) and oxygen, has been synthesized by thermal oxidative polymerization of DP. The PDP was characterized by 1H NMR, 13C NMR, FTIR, DSC, TGA, and EI-MS studies. The overall activation energies of the degradation from Kissinger’s method were 28 and 33 kcal/mol, respectively, for the endocyclic and acyclic peroxide units. The side-chain peroxy groups were found to be thermally more stable than the main chain. Above 45°C the rate of polymerization increases sharply at a particular instant showing an “autoacceleration” with the formation of knee point. The kinetics of autoacceleration has been studied at various temperatures (45–70°C) and pressures (50–250 psi). © 2000 John Wiley&Sons, Inc. J Appl Polym Sci 79: 1549–1555, 2001

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(methacrylonitrile peroxide) (PMNP) has been synthesized from methacrylonitrile by free radical initiated oxidative polymerization and characterized by different spectroscopic methods. NMR spectroscopy confirmed the alternating copolymer structure with labile peroxy bonds in the main chain. The extreme instability of PMNP was noted from FTIR spectroscopy. Thermal degradation studies by using differential scanning calorimetry and thermogravimetry have revealed that PMNP degrades highly exothermically and the heat of degradation, 42.5 kcal mol−1, is of the same order as that reported for other vinyl polyperoxides. Mass spectral fragmentation pattern under electron impact (EI) condition has also been investigated. The mechanism of the primary exothermic degradation has been substantiated by thermochemical calculations. The chain dynamics of the polyperoxide chain has been studied by means of 13C spin–lattice relaxation times (T1) of the main chain as well as the side chain carbons. The temperature dependence of the spin–lattice relaxation times shows that the PMNP is more flexible compared to the analogous poly(styrene peroxide).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copolymers of o-lm-toluidine with o-lm-amino benzoic acid have been synthesized by chemical polymerization using inverse emulsion pathway and characterized by a number of techniques including UV-Vis, FT-IR, FT Raman, EPR and NMR spectroscopies, thermal analysis and conductivity. The solubility of the copolymers in organic solvents increases with increase in the amount of amino benzoic acid in the feed. The copolymers synthesized at room temperature show relatively higher conductivity and are obtained in higher yield compared to those synthesized at 0 and 60 degreesC. The spectral studies have revealed restricted conjugation along the polymer chain. The effect of -COOH substituent on the copolymer structure is discussed. (C) 2003 Elsevier Science B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2) level in biological samples is used as an important index in various studies. Quantification of H2O2 level in tissue fractions in presence of H2O2 metabolizing enzymes may always provide an incorrect result. A modification is proposed for the spectrofluorimetric determination of H2O2 in homovanillic acid (HVA) oxidation method. The modification was included to precipitate biological samples with cold trichloroacetic acid (TCA, 5% w/v) followed by its neutralization with K2HPO4 before the fluorimetric estimation of H2O2 is performed. TCA was used to precipitate the protein portions contained in the tissue fractions. After employing the above modification, it was observed that H2O2 content in tissue samples was >= 2 fold higher than the content observed in unmodified method. Minimum 2 h incubation of samples in reaction mixture was required for completion of the reaction. The stability of the HVA dimer as reaction product was found to be > 12 h. The method was validated by using known concentrations of H2O2 and catalase enzyme that quenches H2O2 as substrate. This method can be used efficiently to determine more accurate tissue H2O2 level without using internal standard and multiple samples can be processed at a time with additional low cost reagents such as TCA and K2HPO4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese dioxide nanoparticles were synthesized by chemical reduction route at different growth temperatures of 40 degrees C, 80 degrees C, 100 degrees C and were characterized using X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Cyclic Voltammetry (CV) and chronoamperometry (CA) analysis. FESEM results show that on increasing growth temperature the morphology changes from clusters into mixture of rods and flakes. XPS analysis reveals the formation of MnO2. Then these particles were immobilized on Pt electrode. A platinum (Pt) electrode modified with low dimensional MnO2 was investigated as a chronoamperometric (CA) sensor for hydrogen peroxide sensing (H2O2). The sample prepared at 100 degrees C shows good electrocatalytic ability for H2O2 sensing when compared with the samples prepared at 40 degrees C and 80 degrees C. At an operating potential of 0.3 V vs. Ag/AgCl catalytic oxidation of the analyte is measured for chronoamperometric (CA) monitoring. The CA signals are linearly proportional to the concentration of H2O2. It is also found that the morphology of the nanostructure plays a vital role in the detection of H2O2. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2) is a key reactive oxygen species and a messenger in cellular signal transduction apart from playing a vital role in many biological processes in living organisms. In this article, we present phenyl boronic acid-functionalized quinone-cyanine (QCy-BA) in combination with AT-rich DNA (exogenous or endogenous cellular DNA), i.e., QCy-BA subset of DNA as a stimuli-responsive NIR fluorescence probe for measuring in vitro levels of H2O2. In response to cellular H2O2 stimulus, QCy-BA converts into QCy-DT, a one-donor-two-acceptor (D2A) system that exhibits switch-on NIR fluorescence upon binding to the DNA minor groove. Fluorescence studies on the combination probe QCy-BA subset of DNA showed strong NIR fluorescence selectively in the presence of H2O2. Furthermore, glucose oxidase (GOx) assay confirmed the high efficiency of the combination probe QCy-BA subset of DNA for probing H2O2 generated in situ through GOx-mediated glucose oxidation. Quantitative analysis through fluorescence plate reader, flow cytometry and live imaging approaches showed that QCy-BA is a promising probe to detect the normal as well as elevated levels of H2O2 produced by EGF/Nox pathways and post-genotoxic stress in both primary and senescent cells. Overall, QCy-BA, in combination with exogenous or cellular DNA, is a versatile probe to quantify and image H2O2 in normal and disease-associated cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific activities of acid, alkaline and neutral proteases in liver, muscle, brain, and gill of fish exposed to 50 ppm ambient carbamide for 15, 30 and 60 days and in control were estimated. It was observed that carbamide even at low concentration of 50 ppm inhibited proteolysis and favoured protein synthesis.