989 resultados para Bound states


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As an application of the new realistic three-dimensional (3D) formalism reported recently for three-nucleon (3N) bound states, an attempt is made to study the effect of three-nucleon forces (3NFs) in triton binding energy in a non partial wave (PW) approach. The spin-isospin dependent 3N Faddeev integral equations with the inclusion of 3NFs, which are formulated as function of vector Jacobi momenta, specifically the magnitudes of the momenta and the angle between them, are solved with Bonn-B and Tucson-Melbourne NN and 3N forces in operator forms which can be incorporated in our 3D formalism. The comparison with numerical results in both, novel 3D and standard PW schemes, shows that non PW calculations avoid the very involved angular momentum algebra occurring for the permutations and transformations and it is more efficient and less cumbersome for considering the 3NF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the (D) over barN interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a confining Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperfine interaction consistent with a finite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an effective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range meson-baryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by effective Lagrangians are incorporated. The derived effective (D) over barN potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we compute the static potential in scalar QED(3) at leading order in 1/Nf. We show that the addition of a non-minimal coupling of Pauli-type (is an element of(mu nu alpha)j(mu)partial derivative(nu)A(alpha)), although it breaks parity, it does not change the analytic structure of the photon propagator and consequently the static potential remains logarithmic ( confining) at large distances. The non-minimal coupling modifies the potential, however, at small charge separations giving rise to a repulsive force of short range between opposite sign charges, which is relevant for the existence of bound states. This effect is in agreement with a previous calculation based on Moller scattering, but differently from such calculation we show here that the repulsion appears independently of the presence of a tree level Chern-Simons term which rather affects the large distance behaviour of the potential turning it into a constant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energies and wavefunctions are calculated for the bound states of the helium atom in the hyperspherical adiabatic approach by the full inclusion of nonadiabatic couplings. We show that the use of appropriate asymptotic radial boundary conditions not only allows the efficient calculation of energies accurate up to a few ppm for the ground state but also gives increasingly precise results for high-lying excited states with a unique set of equations. The accuracy of the wavefunctions is demonstrated by the calculation of oscillator strengths in the length form for transitions between stares ii S-1(e) and (n + 1) P-1(0) up to n = 29, in agreement with variational calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that relativistic mean fields theories with scalar S, and vector V, quadratic radial potentials can generate a harmonic oscillator with exact pseudospin symmetry and positive energy bound states when S = -V. The eigenenergies are quite different from those of the non-relativistic harmonic oscillator. We also discuss a mechanism for perturbatively breaking this, symmetry by introducing a tensor potential. Our results shed light into the intrinsic relativistic nature of the pseudospin symmetry, which might be important in high density systems such as neutron stars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mapping that relates the Wigner phase-space distribution function of a given stationary quantum mechani-cal wave function, a solution of the Schrödinger equation, to a specific solution of the Liouville equation, both subject to the same potential, is studied. By making this mapping, bound states are described by semiclassical distribution functions still depending on Planck's constant, whereas for elastic scattering of a particle by a potential they do not depend on it, the classical limit being reached in this case. Following this method, the mapped distributions of a particle bound in the Pöschl-Teller potential and also in a modified oscillator potential are obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a relativistic quark model for pion structure, which incorporates the nontrivial structure of the vacuum of quantum chromodynamics as modelled by instantons. Pions are bound states of quarks and the strong quark-pion vertex is determined from an instanton induced effective Lagrangian. The interaction of the constituents of the pion with the external electromagnetic field is introduced in gauge invariant form. The parameters of the model, i.e., effective instanton radius and constituent quark mass, are obtained from the vacuum expectation values of the lowest dimensional quark and gluon operators and the low-energy observables of the pion. We apply the formalism to the calculation of the pion form factor by means of the isovector nonforward parton distributions and find agreement with the experimental data. © 2000 Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonperturbative functions that parametrize off-diagonal hadronic matrix elements of the light-cone leading-twist quark operators are considered. These functions are calculated within the proposed relativistic quark model allowing for the nontrivial structure of the QCD vacuum, special attention being given to gauge invariance. Hadrons are treated as bound states of quarks; strong-interaction quark-pion vertices are described by effective interaction Lagrangians generated by instantons. The parameters of the instanton vacuum, such as the effective radius of the instanton and the quark mass, are related to the vacuum expectation values of the quark-gluon operators of the lowest dimension and to low-energy pion observables. © 2000 MAIK Nauka/Interperiodica.