993 resultados para Banach Space


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper continues the study of spectral synthesis and the topologies tau-infinity and tau-r on the ideal space of a Banach algebra, concentrating particularly on the class of Haagerup tensor products of C*-algebras. For this class, it is shown that spectral synthesis is equivalent to the Hausdorffness of tau_infinity. Under a weak extra condition, spectral synthesis is shown to be equivalent to the Hausdorffness of tau_r.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are two main aims of the paper. The first one is to extend the criterion for the precompactness of sets in Banach function spaces to the setting of quasi-Banach function spaces. The second one is to extend the criterion for the precompactness of sets in the Lebesgue spaces $L_p(\Rn)$, $1 \leq p < \infty$, to the so-called power quasi-Banach function spaces. These criteria are applied to establish compact embeddings of abstract Besov spaces into quasi-Banach function spaces. The results are illustrated on embeddings of Besov spaces $B^s_{p,q}(\Rn)$, $0spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.