998 resultados para 4H-SiC substrate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality YBa2Cu3O7-δ films grown on (001) single-crystal Y-ZrO2 substrates by pulsed laser deposition have been studied as a function of substrate temperature using transmission electron microscopy. A transition from epitaxial films to c-axis oriented polycrystalline films was observed at 740°C. An intermediate, polycrystalline, BaZrO3 layer was formed from a reaction between the film and the substrate. A dominant orientation relationship of [001] YBCO//[001]int. layer//[001]YSZ and [110] YBCO//[110]int. layer//[100]YSZ was observed. The formation of grain boundaries in the films resulted in an increased microwave surface resistance and a decreased critical-current density. The superconducting transition temperature remained fairly constant at about 90 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

c-axis-oriented YBa2Cu3O7-x (YBCO) thin films were laser deposited on (001) yttria-stabilized ZrO2 (YSZ) substrates with different surface morphologies. The in-plane orientation of the films on smooth substrates was sensitive to the deposition conditions, often resulting in mixed orientations. However, a strongly dominating [110] YBCO//[110]YSZ orientation was obtained at a deposition temperature of 770°C. Films on substrates with surface steps, induced by depositing a homoepitaxial buffer layer or by thermally annealing the substrate, had a [110]YBCO//[100]YSZ orientation when deposited at the same temperature. It was concluded that the [110]YBCO//[100] YSZ orientation was promoted by a graphoepitaxial mechanism. Films prepared under identical conditions on smooth and stepped substrates grew with extended c axes on the former. It is proposed that the extension can be induced by disorder, invoked by a low oxygen pressure and a low density of adsorption sites. The disorder may be eliminated by either an increase of the oxygen pressure or an increase of the density of adsorption sites in the form of steps. The film microstructure influenced the microwave surface resistance, which was similar for films with one exclusive in-plane orientation and higher for films with mixed orientations. The films on the stepped surfaces had superior superconducting properties; inductive measurements gave a Tc onset of 88 K, a ΔT(90%-10%) c of 0.2 K, and the transport jc was 1.5×106 A/cm2 at 83 K, for films on substrates with homoepitaxial buffer layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-throughput screening of cytochrome P450CAM libraries, for their ability to oxidise indole to indigo and indirubin, has resulted in the identification of variants with activity towards the structurally unrelated substrate diphenylmethane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although tissue inhibitor of metalloproteinase-2 (TIMP-2) is known to be not only an inhibitor of matrix metalloproteinases (MMP) but also a cofactor for membrane-type 1 MMP (MT1-MMP)-mediated MMP-2 activation, it is still unclear how TIMP-2 regulates MMP-2 activation and cleavage of substrates by MT1-MMP. In the present study we examined the levels of cell-surface MT1-MMP, MMP-2 activation and cleavage of MT1-MMP substrates in 293T cells transfected with the MT1-MMP and TIMP-2 genes. Co-expression of TIMP-2 at an appropriate level increased the level of cell-surface MT1-MMP, both the TIMP-2-bound and free forms, and generated processed MMP-2 with gelatin-degrading activity. In contrast, MT1-MMP substrates testican-1 and syndecan-1 were cleaved by the cells expressing MT1-MMP, which was inhibited by TIMP-2 even at levels that stimulate MMP-2 activation. These results suggest that TIMP-2 environment determines MT1-MMP substrate choice between direct cleavage of its own substrates and MMP-2 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typical inductive power transfer (IPT) systems employ two power conversion stages to generate a high-frequency primary current from low-frequency utility supply. This paper proposes a matrix-converter-based IPT system, which employs high-speed SiC devices to facilitate the generation of high-frequency current through a single power conversion stage. The proposed matrix converter topology transforms a three-phase low-frequency voltage system to a high-frequency single-phase voltage, which, in turn, powers a series compensated IPT system. A comprehensive mathematical model is developed and power losses are evaluated to investigate the efficiency of the proposed converter topology. Theoretical results are presented with simulations, which are performed in MATLAB/Simulink, in comparison to a conventional two-stage converter. Experimental evident of a prototype IPT system is also presented to demonstrate the applicability of the proposed concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A measure quantifying unequal use of carbon sources, the Gini coefficient (G), has been developed to allow comparisons of the observed functional diversity of bacterial soil communities. This approach was applied to the analysis of substrate utilisation data obtained from using BIOLOG microtiter plates in a study which compared decomposition processes in two contrasting plant substrates in two different soils. The relevance of applying the Gini coefficient as a measure of observed functional diversity, for soil bacterial communities is evaluated against the Shannon index (H) and average well colour development (AWCD), a measure of the total microbial activity. Correlation analysis and analysis of variance of the experimental data show that the Gini coefficient, the Shannon index and AWCD provided similar information when used in isolation. However, analyses based on the Gini coefficient and the Shannon index, when total activity on the microtiter plates was maintained constant (i.e. AWCD as a covariate), indicate that additional information about the distribution of carbon sources being utilised can be obtained. We demonstrate that the Lorenz curve and its measure of inequality, the Gini coefficient, provides not only comparable information to AWCD and the Shannon index but when used together with AWCD encompasses measures of total microbial activity and absorbance inequality across all the carbon sources. This information is especially relevant for comparing the observed functional diversity of soil microbial communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO 2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH 4-N, CO 2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter a hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line is proposed. A family of spatially varying slip lengths in the Navier slip law recovers the results of past formulations for slip in continuum theories and molecular dynamics simulations and is consistent with well-established experimental observations of complete wetting. This formulation gives a general approach for continuum hydrodynamic theories. New fluid flow behaviors are also predicted yet to be seen in experiment. © 2013 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple, rapid, catalyst-free synthesis of complex patterns of long, vertically aligned multiwalled carbon nanotubes, strictly confined within mechanically-written features on a Si(1 0 0) surface is reported. It is shown that dense arrays of the nanotubes can nucleate and fully fill the features when the low-temperature microwave plasma is in a direct contact with the surface. This eliminates additional nanofabrication steps and inevitable contact losses in applications associated with carbon nanotube patterns. Using metal catalyst has long been considered essential for the nucleation and growth of surface-supported carbon nanotubes (CNTs) [1] and [2]. Only very recently, the possibility of CNT growth using non-metallic (e.g., oxide [3] and SiC [4]) catalysts or artificially created carbon-enriched surface layers [5] has been demonstrated. However, successful integration of carbon nanostructures into Si-based nanodevice platforms requires catalyst-free growth, as the catalyst nanoparticles introduce contact losses, and their catalytic activity is very difficult to control during the growth [6]. Furthermore, in many applications in microfluidics, biological and molecular filters, electronic, sensor, and energy conversion nanodevices, the CNTs need to be arranged in specific complex patterns [7] and [8]. These patterns need to contain the basic features (e.g., lines and dots) written using simple procedures and fully filled with dense arrays of high-quality, straight, yet separated nanotubes. In this paper, we report on a completely metal or oxide catalyst-free plasma-based approach for the direct and rapid growth of dense arrays of long vertically-aligned multi-walled carbon nanotubes arranged into complex patterns made of various combinations of basic features on a Si(1 0 0) surface written using simple mechanical techniques. The process was conducted in a plasma environment [9] and [10] produced by a microwave discharge which typically generates the low-temperature plasmas at the discharge power below 1 kW [11]. Our process starts from mechanical writing (scribing) a pattern of arbitrary features on pre-treated Si(1 0 0) wafers. Before and after the mechanical feature writing, the Si(1 0 0) substrates were cleaned in an aqueous solution of hydrofluoric acid for 2 min to remove any possible contaminations (such as oil traces which could decompose to free carbon at elevated temperatures) from the substrate surface. A piece of another silicon wafer cleaned in the same way as the substrate, or a diamond scriber were used to produce the growth patterns by a simple arbitrary mechanical writing, i.e., by making linear scratches or dot punctures on the Si wafer surface. The results were the same in both cases, i.e., when scratching the surface by Si or a diamond scriber. The procedure for preparation of the substrates did not involve any possibility of external metallic contaminations on the substrate surface. After the preparation, the substrates were loaded into an ASTeX model 5200 chemical vapour deposition (CVD) reactor, which was very carefully conditioned to remove any residue contamination. The samples were heated to at least 800 °C to remove any oxide that could have formed during the sample loading [12]. After loading the substrates into the reactor chamber, N2 gas was supplied into the chamber at the pressure of 7 Torr to ignite and sustain the discharge at the total power of 200 W. Then, a mixture of CH4 and 60% of N2 gases were supplied at 20 Torr, and the discharge power was increased to 700 W (power density of approximately 1.49 W/cm3). During the process, the microwave plasma was in a direct contact with the substrate. During the plasma exposure, no external heating source was used, and the substrate temperature (∼850 °C) was maintained merely due to the plasma heating. The features were exposed to a microwave plasma for 3–5 min. A photograph of the reactor and the plasma discharge is shown in Fig. 1a and b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the catalyst-free synthesis of the arrays of core–shell, ultrathin, size-uniform SiC/AlSiC nanowires on the top of a periodic anodic aluminum oxide template. The nanowires were grown using an environmentally friendly, silane-free process by exposing the silicon supported porous alumina template to CH4 + H2 plasmas. High-resolution scanning and transmission electron microscopy studies revealed that the nanowires have a single-crystalline core with a diameter of about 10 nm and a thin (1–2 nm) amorphous AlSiC shell. Because of their remarkable length, high aspect ratio, and very high surface area-to-volume ratio, these unique structures are promising for nanoelectronic and nanophotonic applications that require efficient electron emission, light scattering, etc. A mechanism for nanowire growth is proposed based upon the reduction of the alumina template to nanosized metallic aluminum droplets forming between nanopores. The subsequent incorporation of silicon and carbon atoms from the plasma leads to nucleation and growth from the top of the alumina template.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite major advances in the fabrication and characterization of SiC and related materials, there has been no convincing evidence of the synthesis of nanodevice-quality nanoislanded SiC films at low, ultralarge scale integration technology-compatible process temperatures. The authors report on a low-temperature (400 °C) plasma-assisted rf magnetron sputtering deposition of high-quality nanocrystalline SiC films made of uniform-size nanoislands that almost completely cover the Si(100) surface. These nanoislands are chemically pure, highly stoichiometric, have a typical size of 20-35 nm, and contain small (∼5 nm) nanocrystalline inclusions. The properties of nanocrystalline SiC films can be effectively controlled by the plasma parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new deposition technique-inductively coupled plasma-assisted RF magnetron sputtering has been developed to fabricate SiC nanoislanded films. In this system, the plasma production and magnetron sputtering can be controlled independently during the discharge. The deposited SiC nanoislanded films are highly uniform, have excellent stoichiometry, have a typical size of 10-45 nm, and contain small (∼ 6 nm) cubic SiC nanocrystallites embedded in an amorphous SiC matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Monte Carlo simulation technique, we have calculated the distribution of ion current extracted from low-temperature plasmas and deposited onto the substrate covered with a nanotube array. We have shown that a free-standing carbon nanotube is enclosed in a circular bead of the ion current, whereas in square and hexagonal nanotube patterns, the ion current is mainly concentrated along the lines connecting the nearest nanotubes. In a very dense array (with the distance between nanotubes/nanotube-height ratio less than 0.05), the ions do not penetrate to the substrate surface and deposit on side surfaces of the nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high level of control over quantum dot (QD) properties such as size and composition during fabrication is required to precisely tune the eventual electronic properties of the QD. Nanoscale synthesis efforts and theoretical studies of electronic properties are traditionally treated quite separately. In this paper, a combinatorial approach has been taken to relate the process synthesis parameters and the electron confinement properties of the QDs. First, hybrid numerical calculations with different influx parameters for Si1-x Cx QDs were carried out to simulate the changes in carbon content x and size. Second, the ionization energy theory was applied to understand the electronic properties of Si1-x Cx QDs. Third, stoichiometric (x=0.5) silicon carbide QDs were grown by means of inductively coupled plasma-assisted rf magnetron sputtering. Finally, the effect of QD size and elemental composition were then incorporated in the ionization energy theory to explain the evolution of the Si1-x Cx photoluminescence spectra. These results are important for the development of deterministic synthesis approaches of self-assembled nanoscale quantum confinement structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembly of highly stoichiometric SiC quantum dots still remains a major challenge for the gas/plasma-based nanodot synthesis. By means of a multiscale hybrid numerical simulation of the initial stage (0.1-2.5 s into the process) of deposition of SiCSi (100) quantum dot nuclei, it is shown that equal Si and kst atom deposition fluxes result in strong nonstoichiometric nanodot composition due to very different surface fluxes of Si and C adatoms to the quantum dots. At this stage, the surface fluxes of Si and C adatoms to SiC nanodots can be effectively controlled by manipulating the SiC atom influx ratio and the Si (100) surface temperature. It is demonstrated that at a surface temperature of 800 K the surface fluxes can be equalized after only 0.05 s into the process; however, it takes more then 1 s at a surface temperature of 600 K. Based on the results of this study, effective strategies to maintain a stoichiometric ([Si] [C] =1:1) elemental ratio during the initial stages of deposition of SiCSi (100) quantum dot nuclei in a neutral/ionized gas-based process are proposed.