938 resultados para thermodynamics
Resumo:
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.
Resumo:
The binding of xylo-oligosaccharides to Chainia endoxylanase resulted in a decrease in fluorescence intensity of the enzyme with the formation of 1:1 complex. Equilibrium and thermodynamic parameters of ligand binding were determined by fluorescence titrations and titration calorimetry. The affinity of xylanase for the oligosaccharides increases in the order X-2 < X-3 < X-4 less than or equal to X-5. Contributions from the enthalpy towards the free energy change decreased with increasing chain length from X-2 to X-4, whereas an increase in entropy was observed, the change in enthalpy and entropy of binding being compensatory. The entropically driven binding process suggested that hydrophobic interactions as well as hydrogen bonds play a predominant role in ligand binding.
Resumo:
Abstract is not available.
Resumo:
BACKGROUND OR CONTEXT Thermodynamics is a core concept for mechanical engineers yet notoriously difficult. Evidence suggests students struggle to understand and apply the core fundamental concepts of thermodynamics with analysis indicating a problem with student learning/engagement. A contributing factor is that thermodynamics is a ‘science involving concepts based on experiments’ (Mayhew 1990) with subject matter that cannot be completely defined a priori. To succeed, students must engage in a deep-holistic approach while taking ownership of their learning. The difficulty in achieving this often manifests itself in students ‘not getting’ the principles and declaring thermodynamics ‘hard’. PURPOSE OR GOAL Traditionally, students practice and “learn” the application of thermodynamics in their tutorials, however these do not consider prior conceptions (Holman & Pilling 2004). As ‘hands on’ learning is the desired outcome of tutorials it is pertinent to study methods of improving their efficacy. Within the Australian context, the format of thermodynamics tutorials has remained relatively unchanged over the decades, relying anecdotally on a primarily didactic pedagogical approach. Such approaches are not conducive to deep learning (Ramsden 2003) with students often disengaged from the learning process. Evidence suggests (Haglund & Jeppsson 2012), however, that a deeper level and ownership of learning can be achieved using a more constructivist approach for example through self generated analogies. This pilot study aimed to collect data to support the hypothesis that the ‘difficulty’ of thermodynamics is associated with the pedagogical approach of tutorials rather than actual difficulty in subject content or deficiency in students. APPROACH Successful application of thermodynamic principles requires solid knowledge of the core concepts. Typically, tutorial sessions guide students in this application. However, a lack of deep and comprehensive understanding can lead to student confusion in the applications resulting in the learning of the ‘process’ of application without understanding ‘why’. The aim of this study was to gain empirical data on student learning of both concepts and application, within thermodynamic tutorials. The approach taken for data collection and analysis was: - 1 Four concurrent tutorial streams were timetabled to examine student engagement/learning in traditional ‘didactic’ (3 weeks) and non-traditional (3 weeks). In each week, two of the selected four sessions were traditional and two non-traditional. This provided a control group for each week. - 2 The non-traditional tutorials involved activities designed to promote student-centered deep learning. Specific pedagogies employed were: self-generated analogies, constructivist, peer-to-peer learning, inquiry based learning, ownership of learning and active learning. - 3 After a three-week period, teaching styles of the selected groups was switched, to allow each group to experience both approaches with the same tutor. This also acted to mimimise any influence of tutor personality / style on the data. - 4 At the conclusion of the trial participants completed a ‘5 minute essay’ on how they liked the sessions, a small questionnaire, modelled on the modified (Christo & Hoang, 2013)SPQ designed by Biggs (1987) and a small formative quiz to gauge the level of learning achieved. DISCUSSION Preliminary results indicate that overall students respond positively to in class demonstrations (inquiry based learning), and active learning activities. Within the active learning exercises, the current data suggests students preferred individual rather than group or peer-to-peer activities. Preliminary results from the open-ended questions such as “What did you like most/least about this tutorial” and “do you have other comments on how this tutorial could better facilitate your learning”, however, indicated polarising views on the nontraditional tutorial. Some student’s responded that they really like the format and emphasis on understanding the concepts, while others were very vocal that that ‘hated’ the style and just wanted the solutions to be presented by the tutor. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION Preliminary results indicated a mixed, but overall positive response by students with more collaborative tutorials employing tasks promoting inquiry based, peer-to-peer, active, and ownership of learning activities. Preliminary results from student feedback supports evidence that students learn differently, and running tutorials focusing on only one pedagogical approached (typically didactic) may not be beneficial to all students. Further, preliminary data suggests that the learning / teaching style of both students and tutor are important to promoting deep learning in students. Data collection is still ongoing and scheduled for completion at the end of First Semester (Australian academic calendar). The final paper will examine in more detail the results and analysis of this project.
Resumo:
The relationship for the relaxation time(s) of a chemical reaction in terms of concentrations and rate constants has been derived from the network thermodynamic approach developed by Oster, Perelson, and Katchalsky.Generally, it is necessary to draw the bond graph and the “network analogue” of the reaction scheme, followed by loop or nodal analysis of the network and finally solving of the resulting differential equations. In the case of single-step reactions, however, it is possible to obtain an expression for the relaxation time. This approach is simpler and elegant and has certain advantages over the usual kinetic method. The method has been illustrated by taking different reaction schemes as examples.
Resumo:
The thermodynamics of tie binding of calcium and magnesium ions to a calcium binding protein from Entamoeba histolytica was investigated by isothermal titration calorimetry (ITC) in 20 mM MOPS buffer (pH 7.0) at 20 degrees C. Enthalpy titration curves of calcium show the presence of four Ca2+ binding sites, There exist two low-affinity sites for Ca2+, both of which are exothermic in nature and with positive cooperative interaction between them. Two other high affinity sites for Ca2+ exist of which one is endothermic and the other exothermic, again with positive cooperative interaction. The binding constants for Ca2+ at the four sites have been verified by a competitive binding assay, where CaBP competes with a chromophoric chelator 5, 5'-Br-2 BAPTA to bind Ca2+ and a Ca2+ titration employing intrinsic tyrosine fluorescence of the protein, The enthalpy of titration of magnesium in the absence of calcium is single site and endothermic in nature. In the case of the titrations performed using protein presaturated with magnesium, the amount of heat produced is altered. Further, the interaction between the high-affinity sites changes to negative cooperativity. No exchange of heat was observed throughout the addition of magnesium in the presence of 1 mM calcium, Titrations performed on a cleaved peptide comprising the N-terminus and the central linker show the existence of two Ca2+ specific sites, These results indicate that this CaBP has one high-affinity Ca-Mg site, one high-affinity Ca-specific site, and two low-affinity Ca-specific sites. The thermodynamic parameters of the binding of these metal ions were used to elucidate the energetics at the individual site(s) and the interactions involved therein at various concentrations of the denaturant, guanidine hydrochloride, ranging from 0.05 to 6.5 M. Unfolding of the protein was also monitored by titration calorimetry as a function of the concentration of the denaturant. These data show that at a GdnHCl concentration of 0.25 M the binding affinity for the Mg2+ ion is lost and there are only two sites which can bind to Ca2+, with substantial loss cooperativity. At concentrations beyond 2.5 M GdnHCl, at which the unfolding of the tertiary structure of this protein is observed by near UV CD spectroscopy, the binding of Ca2+ ions is lost. We thus show that the domain containing the two low-affinity sites is the first to unfold in the presence of GdnHCl. Control experiments with change in ionic strength by addition of KCI in the range 0.25-1 M show the existence of four sites with altered ion binding parameters.
Resumo:
Isothermal titration calorimetry measurements of the binding of 2′-fucosyllactose, lactose, N-acetyllactosamine, galactopyranose, 2-acetamido-2-deoxygalactopyranoside, methyl α-N-dansylgalactosaminide (Me-α-DNS-GalN), methyl α-D-galactopyranoside, methyl β-D-galactopyranoside, and fucose to Erythrina corallodendron lectin (ECorL), a dimer with one binding site per subunit, were performed at 283-286 and 297-299 K. The site binding enthalpies, ΔHb, with the exception of Me-α-DNS-GalN, are the same at both temperatures and range from −47.1 ± 1.0 kJ mol−1 for N-acetyllactosamine to −4.4 ± 0.3 kJ mol−1 for fucose, and the site binding constants range from 3.82 ± 0.9 × 105 M−1 for Me-α-DNS-GalN at 283.2 K to 0.46 ± 0.05 × 103 M−1 for fucose at 297.2 K. The binding reactions are mainly enthalpically driven except for fucose and exhibit enthalpy-entropy compensation. The binding enthalpies of the disaccharides are about twice the binding enthalpies of the monosaccharides in contrast to concanavalin A where the binding enthalpies do not double for the disaccharides. Differential scanning calorimetry measurements show that denaturation of the ECorL dimer results in dissociation into its monomer subunits. The binding constants from the increase in denaturation temperature of ECorL in the presence of saccharides are in agreement with values from isothermal titration calorimetry results. The thermal denaturation of ECorL occurs around 333 K, well below the 344-360 K denaturation temperature of other legume lectins of similar size and tertiary structure, undoubtedly due to the difference in its quaternary structure relative to other legume lectins. This is also apparent from the independent unfolding of its two domains.
Resumo:
Using a solid-state electrochemical cell incorporating yttria-doped thoria (YDT) as the electrolyte and a mixture of (Mn + MnO) as the reference electrode, standard Gibbs free energy of formation of beta-Ta2O5 has been determined as a function of temperature in the range (1000 to 1300) K. The solid-state electrochemical cell used can be represented as (-)Pt,Ta +Ta2O5//(Y2O3)ThO2//Mn + MnO, Pt(+) Combining the reversible e.m.f. of the cell with recent data on the free energy of formation of MnO, standard Gibbs free energy of formation of Ta2O5 from Ta metal and diatomic oxygen gas (O-2) in the temperature range (1000 to 1300) K is obtained: Delta fG degrees +/- 0.35/(kJ.mol(-1)) = -2004.376 + 0.40445(T/K). Because of the significant solid solubility of oxygen in tantalum, a small correction for the activity of Ta in the metal phase in equilibrium with Ta2O5 is applied. An analysis of the results obtained in this study and other free energy data reported in the literature by the "third law" method suggests the need for refining data for Ta2O5 reported in thermodynamic compilations. Used in the analysis is a revised value for standard entropy of Ta2O5 based on more recent low-temperature heat capacity measurements. An improved set of thermodynamic properties of ditantalum pentoxide (Ta2O5) are presented in the temperature range (298.15 to 2200) K. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The linear spin-1/2 Heisenberg antiferromagnet with exchanges J(1) and J(2) between first and second neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at J(2)/J(1)=0.2411 and is particularly simple at J(2)/J(1)=1/2. The BOW phase has a doubly degenerate singlet ground state, broken inversion symmetry, and a finite-energy gap E-m to the lowest-triplet state. The interval 0.4 < J(2)/J(1) < 1.0 has large E-m and small finite-size corrections. Exact solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for thermodynamics up to N = 18. The elementary excitations of the BOW phase with large E-m are topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins. The molar spin susceptibility chi(M)(T) is exponentially small for T << E-m and increases nearly linearly with T to a broad maximum. J(1) and J(2) spin chains approximate the magnetic properties of the BOW phase of Hubbard-type models and provide a starting point for modeling alkali-tetracyanoquinodimethane salts.
Resumo:
Before the onset of the south Asian summer monsoon, sea surface temperature (SST) of the north Indian Ocean warms to 30–32°C. Climatological mean mixed layer depth in spring (March–May) is 10–20 m, and net surface heat flux (Q net ) is 80–100 W m−2 into the ocean. Previous work suggests that observed spring SST warming is small mainly because of (1) penetrative flux of solar radiation through the base of the mixed layer (Q pen ) and (2) advective cooling by upper ocean currents. We estimate the role of these two processes in SST evolution from a two-week Arabian Sea Monsoon Experiment process experiment in April–May 2005 in the southeastern Arabian Sea. The upper ocean is stratified by salinity and temperature, and mixed layer depth is shallow (6 to 12 m). Current speed at 2 m depth is high even under light winds. Currents within the mixed layer are quite distinct from those at 25 m. On subseasonal scales, SST warming is followed by rapid cooling, although the ocean gains heat at the surface: Q net is about 105 W m−2 in the warming phase and 25 W m−2 in the cooling phase; penetrative loss Q pen is 80 W m−2 and 70 W m−2. In the warming phase, SST rises mainly because of heat absorbed within the mixed layer, i.e., Q net minus Q pen ; Q pen reduces the rate of SST warming by a factor of 3. In the second phase, SST cools rapidly because (1) Q pen is larger than Q net and (2) advective cooling is ∼85 W m−2. A calculation using time-averaged heat fluxes and mixed layer depth suggests that diurnal variability of fluxes and upper ocean stratification tends to warm SST on subseasonal timescale. Buoy and satellite data suggest that a typical premonsoon intraseasonal cooling event occurs under clear skies when the ocean is gaining heat through the surface. In this respect, premonsoon SST cooling in the north Indian Ocean is different from that due to the Madden-Julian oscillation or monsoon intraseasonal oscillation.
Resumo:
Time-dependent backgrounds in string theory provide a natural testing ground for physics concerning dynamical phenomena which cannot be reliably addressed in usual quantum field theories and cosmology. A good, tractable example to study is the rolling tachyon background, which describes the decay of an unstable brane in bosonic and supersymmetric Type II string theories. In this thesis I use boundary conformal field theory along with random matrix theory and Coulomb gas thermodynamics techniques to study open and closed string scattering amplitudes off the decaying brane. The calculation of the simplest example, the tree-level amplitude of n open strings, would give us the emission rate of the open strings. However, even this has been unknown. I will organize the open string scattering computations in a more coherent manner and will argue how to make further progress.
Resumo:
The electroweak theory is the part of the standard model of particle physics that describes the weak and electromagnetic interactions between elementary particles. Since its formulation almost 40 years ago, it has been experimentally verified to a high accuracy and today it has a status as one of the cornerstones of particle physics. Thermodynamics of electroweak physics has been studied ever since the theory was written down and the features the theory exhibits at extreme conditions remain an interesting research topic even today. In this thesis, we consider some aspects of electroweak thermodynamics. Specifically, we compute the pressure of the standard model to high precision and study the structure of the electroweak phase diagram when finite chemical potentials for all the conserved particle numbers in the theory are introduced. In the first part of the thesis, the theory, methods and essential results from the computations are introduced. The original research publications are reprinted at the end.