979 resultados para sparse matrix-vector multiplication
Resumo:
Sparse matrix-vector multiplication (SMVM) is a fundamental operation in many scientific and engineering applications. In many cases sparse matrices have thousands of rows and columns where most of the entries are zero, while non-zero data is spread over the matrix. This sparsity of data locality reduces the effectiveness of data cache in general-purpose processors quite reducing their performance efficiency when compared to what is achieved with dense matrix multiplication. In this paper, we propose a parallel processing solution for SMVM in a many-core architecture. The architecture is tested with known benchmarks using a ZYNQ-7020 FPGA. The architecture is scalable in the number of core elements and limited only by the available memory bandwidth. It achieves performance efficiencies up to almost 70% and better performances than previous FPGA designs.
Resumo:
The modern GPUs are well suited for intensive computational tasks and massive parallel computation. Sparse matrix multiplication and linear triangular solver are the most important and heavily used kernels in scientific computation, and several challenges in developing a high performance kernel with the two modules is investigated. The main interest it to solve linear systems derived from the elliptic equations with triangular elements. The resulting linear system has a symmetric positive definite matrix. The sparse matrix is stored in the compressed sparse row (CSR) format. It is proposed a CUDA algorithm to execute the matrix vector multiplication using directly the CSR format. A dependence tree algorithm is used to determine which variables the linear triangular solver can determine in parallel. To increase the number of the parallel threads, a coloring graph algorithm is implemented to reorder the mesh numbering in a pre-processing phase. The proposed method is compared with parallel and serial available libraries. The results show that the proposed method improves the computation cost of the matrix vector multiplication. The pre-processing associated with the triangular solver needs to be executed just once in the proposed method. The conjugate gradient method was implemented and showed similar convergence rate for all the compared methods. The proposed method showed significant smaller execution time.
Resumo:
Krylov subspace techniques have been shown to yield robust methods for the numerical computation of large sparse matrix exponentials and especially the transient solutions of Markov Chains. The attractiveness of these methods results from the fact that they allow us to compute the action of a matrix exponential operator on an operand vector without having to compute, explicitly, the matrix exponential in isolation. In this paper we compare a Krylov-based method with some of the current approaches used for computing transient solutions of Markov chains. After a brief synthesis of the features of the methods used, wide-ranging numerical comparisons are performed on a power challenge array supercomputer on three different models. (C) 1999 Elsevier Science B.V. All rights reserved.AMS Classification: 65F99; 65L05; 65U05.
Resumo:
Mode of access: Internet.
Resumo:
Sparse-matrix sampling using commercially available crystallization screen kits has become the most popular way of determining the preliminary crystallization conditions for macromolecules. In this study, the efficiency of three commercial screening kits, Crystal Screen and Crystal Screen 2 (Hampton Research), Wizard Screens I and II (Emerald BioStructures) and Personal Structure Screens 1 and 2 (Molecular Dimensions), has been compared using a set of 19 diverse proteins. 18 proteins yielded crystals using at least one crystallization screen. Surprisingly, Crystal Screens and Personal Structure Screens showed dramatically different results, although most of the crystallization formulations are identical as listed by the manufacturers. Higher molecular weight polyethylene glycols and mixed precipitants were found to be the most effective precipitants in this study.
Resumo:
Debido al gran número de transistores por mm2 que hoy en día podemos encontrar en las GPU convencionales, en los últimos años éstas se vienen utilizando para propósitos generales gracias a que ofrecen un mayor rendimiento para computación paralela. Este proyecto implementa el producto sparse matrix-vector sobre OpenCL. En los primeros capítulos hacemos una revisión de la base teórica necesaria para comprender el problema. Después veremos los fundamentos de OpenCL y del hardware sobre el que se ejecutarán las librerías desarrolladas. En el siguiente capítulo seguiremos con una descripción del código de los kernels y de su flujo de datos. Finalmente, el software es evaluado basándose en comparativas con la CPU.
Resumo:
Expokit provides a set of routines aimed at computing matrix exponentials. More precisely, it computes either a small matrix exponential in full, the action of a large sparse matrix exponential on an operand vector, or the solution of a system of linear ODEs with constant inhomogeneity. The backbone of the sparse routines consists of matrix-free Krylov subspace projection methods (Arnoldi and Lanczos processes), and that is why the toolkit is capable of coping with sparse matrices of large dimension. The software handles real and complex matrices and provides specific routines for symmetric and Hermitian matrices. The computation of matrix exponentials is a numerical issue of critical importance in the area of Markov chains and furthermore, the computed solution is subject to probabilistic constraints. In addition to addressing general matrix exponentials, a distinct attention is assigned to the computation of transient states of Markov chains.
Resumo:
In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.
Resumo:
This paper deals with approaches for sparse matrix substitutions using vector processing. Many publications have used the W-matrix method to solve the forward/backward substitutions on vector computer. Recently a different approach has been presented using dependency-based substitution algorithm (DBSA). In this paper the focus is on new algorithms able to explore the sparsity of the vectors. The efficiency is tested using linear systems from power systems with 118, 320, 725 and 1729 buses. The tests were performed on a CRAY Y MP2E/232. The speedups for a fast-forward/fast-backward using a 1729-bus system are near 19 and 14 for real and complex arithmetic operations, respectively. When forward/backward is employed the speedups are about 8 and 6 to perform the same simulations.
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.
Resumo:
For many networks in nature, science and technology, it is possible to order the nodes so that most links are short-range, connecting near-neighbours, and relatively few long-range links, or shortcuts, are present. Given a network as a set of observed links (interactions), the task of finding an ordering of the nodes that reveals such a range-dependent structure is closely related to some sparse matrix reordering problems arising in scientific computation. The spectral, or Fiedler vector, approach for sparse matrix reordering has successfully been applied to biological data sets, revealing useful structures and subpatterns. In this work we argue that a periodic analogue of the standard reordering task is also highly relevant. Here, rather than encouraging nonzeros only to lie close to the diagonal of a suitably ordered adjacency matrix, we also allow them to inhabit the off-diagonal corners. Indeed, for the classic small-world model of Watts & Strogatz (1998, Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442) this type of periodic structure is inherent. We therefore devise and test a new spectral algorithm for periodic reordering. By generalizing the range-dependent random graph class of Grindrod (2002, Range-dependent random graphs and their application to modeling large small-world proteome datasets. Phys. Rev. E, 66, 066702-1–066702-7) to the periodic case, we can also construct a computable likelihood ratio that suggests whether a given network is inherently linear or periodic. Tests on synthetic data show that the new algorithm can detect periodic structure, even in the presence of noise. Further experiments on real biological data sets then show that some networks are better regarded as periodic than linear. Hence, we find both qualitative (reordered networks plots) and quantitative (likelihood ratios) evidence of periodicity in biological networks.
Resumo:
[EN]A natural generalization of the classical Moore-Penrose inverse is presented. The so-called S-Moore-Penrose inverse of a m x n complex matrix A, denoted by As, is defined for any linear subspace S of the matrix vector space Cnxm. The S-Moore-Penrose inverse As is characterized using either the singular value decomposition or (for the nonsingular square case) the orthogonal complements with respect to the Frobenius inner product. These results are applied to the preconditioning of linear systems based on Frobenius norm minimization and to the linearly constrained linear least squares problem.
Resumo:
A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.
Resumo:
MSC 2010: 05C50, 15A03, 15A06, 65K05, 90C08, 90C35
Resumo:
Numerical methods related to Krylov subspaces are widely used in large sparse numerical linear algebra. Vectors in these subspaces are manipulated via their representation onto orthonormal bases. Nowadays, on serial computers, the method of Arnoldi is considered as a reliable technique for constructing such bases. However, although easily parallelizable, this technique is not as scalable as expected for communications. In this work we examine alternative methods aimed at overcoming this drawback. Since they retrieve upon completion the same information as Arnoldi's algorithm does, they enable us to design a wide family of stable and scalable Krylov approximation methods for various parallel environments. We present timing results obtained from their implementation on two distributed-memory multiprocessor supercomputers: the Intel Paragon and the IBM Scalable POWERparallel SP2. (C) 1997 by John Wiley & Sons, Ltd.