A generalization of the Moore-Penrose inverse related to matrix subspaces of C(nxm)


Autoria(s): Suárez Sarmiento, Antonio F.; González Sánchez, Luis
Data(s)

31/03/2016

31/03/2016

01/04/2016

Resumo

<p>[EN]A natural generalization of the classical Moore-Penrose inverse is presented. The so-called S-Moore-Penrose inverse of a m x n complex matrix A, denoted by As, is defined for any linear subspace S of the matrix vector space Cnxm. The S-Moore-Penrose inverse As is characterized using either the singular value decomposition or (for the nonsingular square case) the orthogonal complements with respect to the Frobenius inner product. These results are applied to the preconditioning of linear systems based on Frobenius norm minimization and to the linearly constrained linear least squares problem.</p>

Identificador

http://hdl.handle.net/10553/16282

720612

<p>10.1016/j.amc.2010.01.062</p>

Idioma(s)

eng

Direitos

Acceso libre

by-nc-nd

Fonte

<p>Applied Mathematics and Computation. ISSN 0096-3003. 2013(4)</p>

Palavras-Chave #120111 Teoría de matrices #120110 Algebra lineal
Tipo

info:eu-repo/semantics/article