982 resultados para ridge preservation
Resumo:
Background: Preventing ridge collapse with the extraction of maxillary anterior teeth is vital to an esthetic restorative result. Several regenerative techniques are available and are used for socket preservation. The aim of this study is to analyze by clinical parameters the use of acellular dermal matrix (ADM) and anorganic bovine bone matrix (ABM) with synthetic cell-binding peptide P-15 to preserve alveolar bone after tooth extraction. Methods: Eighteen patients in need of extraction of maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus ABM/P-15) or the control group (ADM only). Clinical measurements were recorded initially and at 6 months after ridge-preservation procedures. Results: In the clinical measurements (external vertical palatal measurement [EVPM], external vertical buccal measurement [EVBM], and alveolar horizontal measurement [AHM]) the statistical analysis showed no difference between test and control groups initially and at 6 months. The intragroup analysis, after 6 months, showed a statistically significant reduction in the measurements for both groups. In the comparison between the two groups, the differences in the test group were as follows: EVPM = 0.83 +/- 1.53 mm; EVBM = 1.20 +/- 2.02 mm; and AHM = 2.53 +/- 1.81 mm. The differences in the control group were as follows: EVPM = 0.87 +/- 1.13 mm; EVBM = 1.50 +/- 1.15 mm; and AHM = 3.40 +/- 1.39 mm. The differences in EVPM and EVBM were not statistically significant; however, in horizontal measurement (AHM), there was a statistically significant difference (P<0.05). Conclusion: The results of this study show that ADM used as membrane associated with ABM/P-15 can be used to reduce buccal-palatal dimensions compared to ADM alone for preservation of the alveolar ridge after extraction of anterior maxillary teeth. J Periodontol 2011;82:72-79.
Resumo:
Aim: To evaluate the influence of deproteinized bovine bone mineral (DBBM), in conjunction with a collagen membrane, on bone resorption at implants installed in a lingual position immediately into extraction sockets with horizontal residual buccal defects >2.0 mm. Material & methods: The pulp tissue of the mesial roots of 1M1 was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated. The molars were hemi-sectioned and the distal roots removed. Implants were installed in a lingual position and with the shoulder flush with the buccal bony crest. After installation, defects of about 2.5 and 2.7 mm in width resulted at the buccal aspects of the test and control sites, respectively. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. On the control sites, no biomaterials were applied. A non-submerged healing was allowed. Results: After 3 months of healing, one control implant was not integrated and was excluded from the analysis, together with the contralateral test implant. All remaining implants were integrated into mature bone. The buccal alveolar bony crest was resorbed more at the test compared with the control sites, 2.2 ± 0.9 mm and 1.5 ± 1.3 mm, respectively. The vertical resorption of the lingual plate was 1.6 ± 1.5 mm and 1.5 ± 1.1 mm at the test and control sites, respectively. Only small residual DBBM particles were found at the test sites (1.4%). Conclusion: The use of DBBM particles to fill buccal defects of ≥2.5 mm at implants installed immediately into alveolar extraction sockets did not preserve the buccal bony wall. © 2012 John Wiley & Sons A/S.
Resumo:
Objective: To compare with pristine sites bone resorption and soft tissue adaptation at implants placed immediately into extraction sockets (IPIES) in conjunction with deproteinized bovine bone mineral (DBBM) particles and a collagen membrane.Material and methods: The mesial root of the third premolar in the left side of the mandible was endodontically treated (Test). Flaps were elevated, the tooth hemi-sectioned, and the distal root removed to allow the immediate installation of an implant into the extraction socket in a lingual position. DBBM particles were placed into the defect and on the outer contour of the buccal bony ridge, concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. The premolar on the right side of the mandible was left in situ (control). Ground sections from the center of the implant as well as from the center of the distal root of the third premolar of the opposite side of the mandible were obtained. The histological image from the implant site was superimposed to that of the contralateral pristine distal alveolus, and dimensional variation evaluated for the hard tissue and the alveolar ridge.Results: After 3 months of healing, both histological and photographic evaluation revealed a reduction of hard and soft tissue dimensions.Conclusion: The contour augmentation performed with DBBM particles and a collagen membrane at the buccal aspects of implants placed IPIES was not able to maintain the tissue volume.
Resumo:
PURPOSE: The aim of this review was to evaluate the techniques and outcomes of postextraction ridge preservation and the efficacy of these procedures in relation to subsequent implant placement. MATERIALS AND METHODS: A MEDLINE/PubMed search was conducted and the bibliographies of reviews from 1999 to March 2008 were assessed for appropriate studies. Randomized clinical trials, controlled clinical trials, and prospective/retrospective studies with a minimum of five patients were included. RESULTS: A total of 135 abstracts were identified, from which 53 full-text articles were further examined, leading to 37 human studies that fulfilled the search criteria. Many different techniques, methodologies, durations, and materials were presented in the publications reviewed, making direct comparison difficult. CONCLUSIONS: Despite the heterogeneity of the studies, it was concluded that ridge preservation procedures are effective in limiting horizontal and vertical ridge alterations in postextraction sites. There is no evidence to support the superiority of one technique over another. There is also no conclusive evidence that ridge preservation procedures improve the ability to place implants.
Resumo:
Aim: To evaluate the influence of deproteinized bovine bone mineral in conjunction with a collagen membrane, at implants installed into sockets in a lingual position immediately after tooth extraction, and presenting initial horizontal residual buccal defects <2 mm. Material and methods: The pulp tissue of the mesial roots of 4P4 was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated, and the buccal and lingual alveolar bony plates were exposed. The premolars were hemi-sectioned, and the distal roots were removed. Implants were installed in a lingual position and with the margin flush with the buccal bony crest. After installation, defects resulted at about 1.7 mm in width at the buccal aspects, both at the test and control sites. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. Results: After 3 months of healing, one implant was found not integrated and was excluded from the analysis together with the contralateral control implant. All remaining implants were integrated into mature bone. The bony crest was located at the same level of the implant shoulder, both at the test and control sites. At the buccal aspect, the most coronal bone-to-implant contact was located at a similar distance from the implant margin at the test (1.7 ± 1.0 mm) and control (1.6 ± 0.8 mm) sites, respectively. Only small residual DBBM particles were found at the test sites. Conclusion: The placement of an implant in a lingual position into a socket immediately after tooth extraction may favor a low exposure of the buccal implant surface. The use of DBBM particles, concomitantly with a collagen membrane, did not additionally improve the outcome obtained at the control sites. © 2011 John Wiley & Sons A/S.
Resumo:
Aim To evaluate the influence of resorbable membranes on hard tissue alterations and osseointegration at implants placed into extraction sockets in a dog model. Material and methods In the mandibular premolar region, implants were installed immediately into the extraction sockets of six Labrador dogs. Collagen-resorbable membranes were placed at the test sites, while the control sites were left uncovered. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation. Results After 4 months of healing, a control implant was not integrated (n=5). Both at the test and at the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between the test and the control sites, the alveolar bone crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 1.7 mm) compared with the control sites (loss: 2.2 mm). Conclusions The use of collagen-resorbable membranes at implants immediately placed into extraction sockets contributed to a partial (23%) preservation of the buccal outline of the alveolar process. To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Carvalho Cardoso L, Lang NP. Collagen membranes at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 891-897.doi: 10.1111/j.1600-0501.2010.01946.x.
Resumo:
Aim To evaluate the influence of magnesium-enriched hydroxyapatite (MHA) (SintLife (R)) on bone contour preservation and osseointegration at implants placed immediately into extraction sockets. Material and methods In the mandibular pre-molar region, implants were installed immediately into extraction sockets of six Labrador dogs. MHA was placed at test sites, while the control sites did not receive augmentation materials. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation. Results After 4 months of healing, one control implant was not integrated leaving n=5 test and control implants for evaluation. Both at the test and the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between test and control sites, the alveolar bony crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 0.7 mm) compared with the control sites (loss: 1.2 mm), even though this difference did not reach statistical significance. Conclusions The use of MHA to fill the defect around implants placed into the alveolus immediately after tooth extraction did not contribute significantly to the maintenance of the contours of the buccal alveolar bone crest. To cite this article:Caneva M, Botticelli D, Stellini E, Souza SLS, Salata LA, Lang NP. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 22, 2011; 512-517doi: 10.1111/j.1600-0501.2010.02040.x.
Resumo:
AimTo evaluate the influence of resorbable membranes on hard tissue alterations and osseointegration at implants placed into extraction sockets in a dog model.Material and methodsIn the mandibular premolar region, implants were installed immediately into the extraction sockets of six Labrador dogs. Collagen-resorbable membranes were placed at the test sites, while the control sites were left uncovered. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation.ResultsAfter 4 months of healing, a control implant was not integrated (n=5). Both at the test and at the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between the test and the control sites, the alveolar bone crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 1.7 mm) compared with the control sites (loss: 2.2 mm).ConclusionsThe use of collagen-resorbable membranes at implants immediately placed into extraction sockets contributed to a partial (23%) preservation of the buccal outline of the alveolar process.To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Carvalho Cardoso L, Lang NP. Collagen membranes at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 891-897.doi: 10.1111/j.1600-0501.2010.01946.x.
Resumo:
Aim: To evaluate the influence of deproteinized bovine bone mineral (DBBM) particles concomitant with the placement of a collagen membrane on alveolar ridge preservation and on osseointegration of implants placed into alveolar sockets immediately after tooth extraction. Material and methods: The pulp tissue of the mesial roots of 3P3 was removed in six Labrador dogs and the root canals were filled. Flaps were elevated in the right side of the mandible, and the buccal and lingual alveolar bony plates were exposed. The third premolar was hemi-sectioned and the distal root was removed. A recipient site was prepared and an implant was placed lingually. After implant installation, defects of about 0.6mm wide and 3.1mm depth resulted at the buccal aspects of the implant, both at the test and at the control sites. The same surgical procedures and measurements were performed on the left side of the mandible. However, DBBM particles with a size of 0.25-1mm were placed into the remaining defect concomitant with the placement of a collagen membrane. Results: All implants were integrated into mature bone. No residual DBBM particles were detected at the test sites after 4 months of healing. Both the test and the control sites showed buccal alveolar bone resorption, 1.8 +/- 1.1 and 2.1 +/- 1mm, respectively. The most coronal bone-to-implant contact at the buccal aspect was 2 +/- 1.1 an 2.8 +/- 1.3mm, at the test and the control sites, respectively. This difference in the distance was statistically significant. Conclusion: The application of DBBM concomitant with a collagen membrane to fill the marginal defects around implants placed into the alveolus immediately after tooth extraction contributed to improved bone regeneration in the defects. However, with regard to buccal bony crest preservation, a limited contribution of DBBM particles was achieved.
Resumo:
AimTo evaluate the influence of magnesium-enriched hydroxyapatite (MHA) (SintLife (R)) on bone contour preservation and osseointegration at implants placed immediately into extraction sockets.Material and methodsIn the mandibular pre-molar region, implants were installed immediately into extraction sockets of six Labrador dogs. MHA was placed at test sites, while the control sites did not receive augmentation materials. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation.ResultsAfter 4 months of healing, one control implant was not integrated leaving n=5 test and control implants for evaluation. Both at the test and the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between test and control sites, the alveolar bony crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 0.7 mm) compared with the control sites (loss: 1.2 mm), even though this difference did not reach statistical significance.ConclusionsThe use of MHA to fill the defect around implants placed into the alveolus immediately after tooth extraction did not contribute significantly to the maintenance of the contours of the buccal alveolar bone crest.To cite this article:Caneva M, Botticelli D, Stellini E, Souza SLS, Salata LA, Lang NP. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 22, 2011; 512-517doi: 10.1111/j.1600-0501.2010.02040.x.
Resumo:
Treatment of severe compromised tooth in the maxillary anterior area still poses great challenge to the clinicians. Several treatment modalities have been proposed to restore the function and aesthetics in teeth with advanced periodontal disease. The present study aims to report a case of traumatic injury of a left-maxillary central incisor with ridge preservation, orthodontic movement, and implant therapy. A 45-year-old woman underwent the proposed treatment for her left central incisor: basic periodontal therapy, xenogenous bone graft, and guided bone regeneration (GBR). Six months after the graft procedure, orthodontic movement by means of alignment and leveling was made and a coronal displacement of the gingival margin and vertical bone apposition could be observed after 13 months of active movement. Afterwards, a dental implant was placed followed by a connective tissue graft and immediate provisionalization of the crown. In conclusion, orthodontic movement was effective to improve the gingival tissue and alveolar bone prior to implant placement favoring the aesthetic results. Six years postoperatively, the results revealed height and width alveolar bone gain indicating that the treatment proposed was able to restore all the functional and aesthetic parameters.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The therapy of traumatized front teeth with ankylosis and additional root resorption is a real challenge for the clinician. Due to the infraposition ankylosed teeth are useless and esthetically unsatisfactory. The progressive replacement resorption and the vertical growth inhibition render an intervention inevitable. In the following case report, the prophylaxis of the alveolar ridge is brought into focus. The treatment of two ankylosed teeth by decoronation, preservation of the alveolar ridge and an implant-supported supraconstruction will be presented. The additional histological assessment confirms the diagnosis and the choice of treatment.
Resumo:
Introdução: O processo alveolar é o conjunto de osso que se encontra em redor da raiz do dente. Este osso é sensível a uma variedade de fatores ambientais e fisiológicos que influenciam a sua integridade e o seu funcionamento. Como tal, a sua formação assim como a sua preservação é dependente da presença contínua do dente. A reabsorção do processo alveolar após extração dentária é uma consequência natural e fisiológica indesejável, que pode dificultar a colocação de um implante dentário na posição desejada. Com o aumento cada vez mais das demandas estéticas em medicina dentária, torna-se, portanto, necessário prevenir que a reabsorção óssea provoque este defeito na arcada dentária. Objetivos: Realizar uma revisão bibliográfica sobre as várias técnicas e materiais para preservação do rebordo alveolar, a fim de prevenir ou minimizar a reabsorção alveolar após extração dentária. Material e Métodos: A pesquisa foi realizada nas bases de dados Pubmed, B-on e Scielo, não foi aplicado nenhum limite temporal, e os critérios de inclusão foram artigos em língua inglesa e portuguesa. Num total de 164 artigos, selecionaram-se 82 estritamente relacionados com o tema. Os artigos excluídos desviavam-se do objetivo do trabalho ou eram inconclusivos. Selecionaram-se, também, capítulos do livro Clinical Periodontology and Implant Dentistry Volume 1 e 2, dos autores Niklaus P.Lang e Jan Lindhe. Desenvolvimento: De modo a compreender como o processo alveolar reabsorve, deve-se ter em conta as várias técnicas que se podem realizar para permitir uma boa quantidade de osso remanescente na arcada adequada a cada caso para uma possível reabilitação. As técnicas de preservação do osso alveolar após extração passam pela realização de técnicas cirúrgicas minimamente invasivas, estabilização do coágulo pelo princípio da cicatrização por primeira intenção usando membranas ou retalhos, preenchimento do alvéolo dentário com materiais de enxerto ou substitutos ósseos, terapias combinadas com a colocação de implantes imediatos e o recurso a células e fatores de crescimento. Conclusão: A preservação alveolar tem grande importância para uma posterior reabilitação oral com implantes com maior quantidade de osso disponível do que quando não é feita qualquer tipo de preservação. A extração das peças dentárias deve ser feita com cuidado para preservar ao máximo ou não danificar as superfícies ósseas remanescentes. É aconselhado que o encerramento da ferida seja por primeira intenção e que proporcione estabilidade ao coágulo, podendo ser usado retalhos ou mesmo membranas. O uso de enxertos ósseos tem uma importante função de proporcionar uma matriz para o coágulo se formar e promover o processo de cicatrização. O método de implante imediato, para além de ser bastante usado, tem como finalidade o conforto para o paciente de não ser submetido a uma posterior cirurgia para colocação do mesmo e, simultaneamente, mantem a estabilidade dos tecidos moles. Ainda uma técnica menos usada é com células e fatores de crescimento que proporciona uma cicatrização mais rápida e um aumento do potencial regenerativo dos tecidos.
Resumo:
Sites 759 through 764 were drilled during Ocean Drilling Program Leg 122 on the Exmouth and Wombat plateaus off northwest Australia, eastern Indian Ocean. Radiolarian recovery was generally poor due to unsuitable lithofacies. A few Quaternary radiolarian faunas were recovered from most of the sites. Rare and poorly preserved Oligocene and Eocene radiolarian faunas were recovered from Holes 760A, 761B, 761C, and 762B. Poorly preserved Cretaceous radiolarians occur in samples from Holes 761B, 762C, 763B, and 763C. Chert intervals from Cores 122-761B-28X, 122-761C-5R, and 122-761C-6R contain moderately well-preserved Cretaceous radiolarian faunas (upper Albian, mid- to upper Cenomanian, and mid-Albian, respectively). Rare fragments of Upper Triassic radiolarians were recovered from sections in Holes 759B, 760B, and 764A. The only well-preserved pre-Quaternary radiolarians are in lower and upper Paleocene faunas (Bekoma campechensis Zone) recovered from Site 761, Sections 122-761B-16X-1 to 122-761C-19X-CC. The composition of these faunas differs somewhat from that of isolated coeval Paleocene faunas from Deep Sea Drilling Project sites in the Atlantic, Gulf of Mexico, tropical Pacific, eastern Indian Ocean, and near Spain and North Africa, as well as from several on-land sites in North America, Cuba, and the USSR.