935 resultados para putative export machinery (PTEX)
Resumo:
Trypanosoma brucei is the causative agent of Human African Trypanosomiasis. Trypanosomes are early diverged protozoan parasites and show significant differences in their gene expression compared with higher eukaryotes. Due to a lack of individual gene promoters, large polycistronic transcripts are produced and individual mRNAs mature by trans-splicing and polyadenylation. In the absence of transcriptional control, regulation of gene expression occurs post-transcriptionally mainly by control of transcript stability and translation. Regulation of mRNA export from the nucleus to the cytoplasm might be an additional post-transcriptional event involved in gene regulation. However, our knowledge about mRNA export in trypanosomes is very limited. Although export factors of higher eukaryotes are reported to be conserved, only a few orthologues can be readily identified in the genome of T. brucei. Hence, biochemical approaches are needed to identify the export machinery of trypanosomes. Here, we report the functional characterization of the essential mRNA export factor TbMex67. TbMex67 contains a unique and essential N-terminal zinc finger motif. Furthermore, we could identify two interacting export factors namely TbMtr2 and the karyopherin TbIMP1. Our data show that the general heterodimeric export receptor Mex67-Mtr2 is conserved throughout the eukaryotic kingdom albeit exhibiting parasite-specific features.
Resumo:
Background: Clinical and experimental studies suggest that the probiotic mixture VSL#3 has protective activities in the context of inflammatory bowel disease (IBD). The aim of the study was to reveal bacterial strain-specific molecular mechanisms underlying the anti-inflammatory potential of VSL#3 in intestinal epithelial cells (IEC).
Methodology/Principal Findings: VSL#3 inhibited TNF-induced secretion of the T-cell chemokine interferon-inducible protein (IP-10) in Mode-K cells. Lactobacillus casei (L. casei) cell surface proteins were identified as active anti-inflammatory components of VSL#3. Interestingly, L. casei failed to block TNF-induced IP-10 promoter activity or IP-10 gene transcription at the mRNA expression level but completely inhibited IP-10 protein secretion as well as IP-10-mediated T-cell transmigration. Kinetic studies, pulse-chase experiments and the use of a pharmacological inhibitor for the export machinery (brefeldin A) showed that L. casei did not impair initial IP-10 production but decreased intracellular IP-10 protein stability as a result of blocked IP-10 secretion. Although L. casei induced IP-10 ubiquitination, the inhibition of proteasomal or lysosomal degradation did not prevent the loss of intracellular IP-10. Most important for the mechanistic understanding, the inhibition of vesicular trafficking by 3-methyladenine (3-MA) inhibited IP-10 but not IL-6 expression, mimicking the inhibitory effects of L. casei. These findings suggest that L. casei impairs vesicular pathways important for the secretion of IP-10, followed by subsequent degradation of the proinflammatory chemokine. Feeding studies in TNF Delta ARE and IL-10(-/-) mice revealed a compartimentalized protection of VSL#3 on the development of cecal but not on ileal or colonic inflammation. Consistent with reduced tissue pathology in IL-10(-/-) mice, IP-10 protein expression was reduced in primary epithelial cells.
Conclusions/Significance: We demonstrate segment specific effects of probiotic intervention that correlate with reduced IP-10 protein expression in the native epithelium. Furthermore, we revealed post-translational degradation of IP-10 protein in IEC to be the molecular mechanism underlying the anti-inflammatory effect.
Resumo:
Urinary tract infections (UTIs) are typically caused by bacteria that colonize different regions of the urinary tract, mainly the bladder and the kidney. Approximately 25% of women that suffer from UTIs experience a recurrent infection within 6 months of the initial bout, making UTIs a serious economic burden resulting in more than 10 million hospital visits and $3.5 billion in healthcare costs in the United States alone. Type-1 fimbriated Uropathogenic E. coli (UPEC) is the major causative agent of UTIs, accounting for almost 90 % of bacterial UTIs. The unique ability of UPEC to bind and invade the superficial bladder epithelium allows the bacteria to persist inside epithelial niches and survive antibiotic treatment. Persistent, intracellular UPEC are retained in the bladder epithelium for long periods, making them a source of recurrent UTIs. Hence, the ability of UPEC to persist in the bladder is a matter of major health and economic concern, making studies exploring the underlying mechanism of UPEC persistence highly relevant.
In my thesis, I will describe how intracellular Uropathogenic E.coli (UPEC) evade host defense mechanisms in the superficial bladder epithelium. I will also describe some of the unique traits of persistent UPEC and explore strategies to induce their clearance from the bladder. I have discovered that the UPEC virulence factor Alpha-hemolysin (HlyA) plays a key role in the survival and persistence of UPEC in the superficial bladder epithelium. In-vitro and in-vivo studies comparing intracellular survival of wild type (WT) and hemolysin deficient UPEC suggested that HlyA is vital for UPEC persistence in the superficial bladder epithelium. Further in-vitro studies revealed that hemolysin helped UPEC persist intracellularly by evading the bacterial expulsion actions of the bladder cells and remarkably, this virulence factor also helped bacteria avoid t degradation in lysosomes.
To elucidate the mechanistic basis for how hemolysin promotes UPEC persistence in the urothelium, we initially focused on how hemolysin facilitates the evasion of UPEC expulsion from bladder cells. We found that upon entry, UPEC were encased in “exocytic vesicles” but as a result of HlyA expression these bacteria escaped these vesicles and entered the cytosol. Consequently, these bacteria were able to avoid expulsion by the cellular export machinery.
Since bacteria found in the cytosol of host cells are typically recognized by the cellular autophagy pathway and transported to the lysosomes where they are degraded, we explored why this was not the case here. We observed that although cytosolic HlyA expressing UPEC were recognized and encased by the autophagy system and transported to lysosomes, the bacteria appeared to avoid degradation in these normally degradative compartments. A closer examination of the bacteria containing lysosomes revealed that they lacked V-ATPase. V-ATPase is a well-known proton pump essential for the acidification of mammalian intracellular degradative compartments, allowing for the proper functioning of degradative proteases. The absence of V-ATPase appeared to be due to hemolysin mediated alteration of the bladder cell F-actin network. From these studies, it is clear that UPEC hemolysin facilitates UPEC persistence in the superficial bladder epithelium by helping bacteria avoid expulsion by the exocytic machinery of the cell and at the same time enabling the bacteria avoid degradation when the bacteria are shuttled into the lysosomes.
Interestingly even though UPEC appear to avoid elimination from the bladder cell their ability to multiple in bladder cells seem limited.. Indeed, our in-vitro and in-vivo experiments reveal that UPEC survive in superficial bladder epithelium for extended periods of time without a significantly change in CFU numbers. Indeed, we observed these bacteria appeared quiescent in nature. This observation was supported by the observation that UPEC genetically unable to enter a quiescence phase exhibited limited ability to persist in bladder cells in vitro and in vivo, in the mouse bladder.
The studies elucidated in this thesis reveal how UPEC toxin, Alpha-hemolysin plays a significant role in promoting UPEC persistence via the modulation of the vesicular compartmentalization of UPEC at two different stages of the infection in the superficial bladder epithelium. These results highlight the importance of UPEC Alpha-hemolysin as an essential determinant of UPEC persistence in the urinary bladder.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Enteropathogenic Escherichia coli (EPEC) causes a characteristic histopathology in intestinal epithelial cells called the attaching and effacing lesion. Although the histopathological lesion is well described the bacterial factors responsible for it are poorly characterized. We have identified four EPEC chromosomal genes whose predicted protein sequences are similar to components of a recently described secretory pathway (type III) responsible for exporting proteins lacking a typical signal sequence. We have designated the genes sepA, sepB, sepC, and sepD (sep, for secretion of E. coli proteins). The predicted Sep polypeptides are similar to the Lcr (low calcium response) and Ysc (yersinia secretion) proteins of Yersinia species and the Mxi (membrane expression of invasion plasmid antigens) and Spa (surface presentation of antigens) regions of Shigella flexneri. Culture supernatants of EPEC strain E2348/69 contain several polypeptides ranging in size from 110 kDa to 19 kDa. Proteins of comparable size were recognized by human convalescent serum from a volunteer experimentally infected with strain E2348/69. A sepB mutant of EPEC secreted only the 110-kDa polypeptide and was defective in the formation of attaching and effacing lesions and protein-tyrosine phosphorylation in tissue culture cells. These phenotypes were restored upon complementation with a plasmid carrying an intact sepB gene. These data suggest that the EPEC Sep proteins are components of a type III secretory apparatus necessary for the export of virulence determinants.
Resumo:
Background: Regulation of gene expression in Plasmodium falciparum (Pf) remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. Results: The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs – the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs – were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS); this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. Conclusion: The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.
Resumo:
Viral genomes are encapsidated within protective protein shells. This encapsidation can be achieved either by a co-condensation reaction of the nucleic acid and coat proteins, or by first forming empty viral particles which are subsequently packaged with nucleic acid, the latter mechanism being typical for many dsDNA bacteriophages. Bacteriophage PRD1 is an icosahedral, non-tailed dsDNA virus that has an internal lipid membrane, the hallmark of the Tectiviridae family. Although PRD1 has been known to assemble empty particles into which the genome is subsequently packaged, the mechanism for this has been unknown, and there has been no evidence for a separate packaging vertex, similar to the portal structures used for packaging in the tailed bacteriophages and herpesviruses. In this study, a unique DNA packaging vertex was identified for PRD1, containing the packaging ATPase P9, packaging factor P6 and two small membrane proteins, P20 and P22, extending the packaging vertex to the internal membrane. Lack of small membrane protein P20 was shown to totally abolish packaging, making it an essential part of the PRD1 packaging mechanism. The minor capsid proteins P6 was shown to be an important packaging factor, its absence leading to greatly reduced packaging efficiency. An in vitro DNA packaging mechanism consisting of recombinant packaging ATPase P9, empty procapsids and mutant PRD1 DNA with a LacZ-insert was developed for the analysis of PRD1 packaging, the first such system ever for a virus containing an internal membrane. A new tectiviral sequence, a linear plasmid called pBClin15, was identified in Bacillus cereus, providing material for sequence analysis of the tectiviruses. Analysis of PRD1 P9 and other putative tectiviral ATPase sequences revealed several conserved sequence motifs, among them a new tectiviral packaging ATPase motif. Mutagenesis studies on PRD1 P9 were used to confirm the significance of the motifs. P9-type putative ATPase sequences carrying a similar sequence motif were identified in several other membrane containing dsDNA viruses of bacterial, archaeal and eukaryotic hosts, suggesting that these viruses may have similar packaging mechanisms. Interestingly, almost the same set of viruses that were found to have similar putative packaging ATPases had earlier been found to share similar coat protein folds and capsid structures, and a common origin for these viruses had been suggested. The finding in this study of similar packaging proteins further supports the idea that these viruses are descendants of a common ancestor.
Resumo:
Edwardsiella tarda is a Gram-negative enteric pathogen that causes disease in both humans and animals. Recently, a type III secretion system (T3SS) has been found to contribute to Ed. tarda pathogenesis. EseB, EseC and EseD were shown to be secreted by the T3SS and to be the major components of the extracellular proteins (ECPs). Based on sequence similarity, they have been proposed to function as the 'translocon' of the T3SS needle structure. In this study, it was shown that EseB, EseC and EseD formed a protein complex after secretion, which is consistent with their possible roles as translocon components. The secretion of EseB and EseD was dependent on EscC (previously named Orf2). EscC has the characteristics of a chaperone; it is a small protein (13 kDa), located next to the translocators in the T3SS gene cluster, and has a coiled-coil structure at the N-terminal region as predicted by COILS. An in-frame deletion of escC abolished the secretion of EseB and EseD, and complementation of Delta escC restored the export of EseB and EseD into the culture supernatant. Further studies showed that EscC is not a secreted protein and is located on the membrane and in the cytoplasm. Mutation of escC did not affect the transcription of eseB but reduced the amount of EseB as measured by using an EseB-LacZ fusion protein in Ed. tarda. Co-purification studies demonstrated that EscC formed complexes with EseB and EseD. The results suggest that EscC functions as a T3SS chaperone for the putative translocon components EseB and EseD in Ed. tarda.
Resumo:
This work project focuses on developing new approaches which enhance Portuguese exports towards a defined German industry sector within the information technology and electronics fields. Firstly and foremost, information was collected and a set of expert and top managers’ interviews were performed in order to acknowledge the demand of the German market while identifying compatible Portuguese supply capabilities. Among the main findings, Industry 4.0 presents itself as a valuable opportunity in the German market for Portuguese medium sized companies in the embedded systems area of expertise for machinery and equipment companies. In order to achieve the purpose of the work project, an embedded systems platform targeting machinery and equipment companies was suggested as well as it was developed several recommendations on how to implement it. An alternative approach for this platform was also considered within the German market namely the eHealth sector having the purpose of enhancing the current healthcare service provision.
Resumo:
The present paper is a personal reflection on a work project carried out to promote exports from Portugal to Germany in the IT area, under consideration of the deliverables required by the clients CCILA and Anetie. The project outcome approaches the fact that the majority of the Portuguese market players has disadvantages in size and does rarely coordinate activities among each other, which hinders them to export successfully on a broad scale. To bring together Portuguese delivery potential and German market demand, expert interviews were conducted. Based on the findings, a concept was developed to overcome the domestic collaboration issues in order to strengthen the national exports in the identified sector - embedded systems implementation services for machinery and equipment companies.
Resumo:
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF-5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to cofractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Pyrophosphate-dependent phosphofructokinase (PPi-PFK) has been detected in several types of plant cells, but the gene has not been reported in sugar cane. Using Citrux paradixi PPi-PFK gene (AF095520 and AF095521) sequences to search the sugar cane EST database, we have identified both the α and β subunits of this enzyme. The deduced amino acid sequences showed 76 and 80% similarity with the corresponding α and β subunits of C. paradisi. A high degree of similarity was also observed among the PFK β subunits when the alignment of the sugar cane sequences was compared to those of Ricinus communis and Solanum tuberosum, it appears that α and β are two distinct subunits; they were found at different concentrations in several sugar cane tissues. It remains to be determined if the different gene expression levels have some physiological importance and how they affect sucrose synthesis, export, and storage in vacuoles. A comparison between the amino acid sequences of β PFKs from a variety of organisms allowed us to identify the two critical Asp residues typical of this enzyme's activity site and the other binding sites; these residues are tightly conserved in all members of this protein family. Apparently, there are catalytic residues on the β subunit of the pyrophosphate-dependent enzyme.
Resumo:
Includes Bibliography
Resumo:
Includes bibliography.