994 resultados para matrix assisted
Resumo:
Corynebacterium species (spp.) are among the most frequently isolated pathogens associated with subclinical mastitis in dairy cows. However, simple, fast, and reliable methods for the identification of species of the genus Corynebacterium are not currently available. This study aimed to evaluate the usefulness of matrix-assisted laser desorption ionization/mass spectrometry (MALDI-TOF MS) for identifying Corynebacterium spp. isolated from the mammary glands of dairy cows. Corynebacterium spp. were isolated from milk samples via microbiological culture (n=180) and were analyzed by MALDI-TOF MS and 16S rRNA gene sequencing. Using MALDI-TOF MS methodology, 161 Corynebacterium spp. isolates (89.4%) were correctly identified at the species level, whereas 12 isolates (6.7%) were identified at the genus level. Most isolates that were identified at the species level with 16 S rRNA gene sequencing were identified as Corynebacterium bovis (n=156; 86.7%) were also identified as C. bovis with MALDI-TOF MS. Five Corynebacterium spp. isolates (2.8%) were not correctly identified at the species level with MALDI-TOF MS and 2 isolates (1.1%) were considered unidentified because despite having MALDI-TOF MS scores >2, only the genus level was correctly identified. Therefore, MALDI-TOF MS could serve as an alternative method for species-level diagnoses of bovine intramammary infections caused by Corynebacterium spp.
Resumo:
Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research.
Resumo:
Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied.
Resumo:
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. In the present study, we prospectively compared MALDI-TOF MS to the conventional phenotypic method for the identification of routine isolates. Colonies were analyzed by MALDI-TOF MS either by direct deposition on the target plate or after a formic acid-acetonitrile extraction step if no valid result was initially obtained. Among 1,371 isolates identified by conventional methods, 1,278 (93.2%) were putatively identified to the species level by MALDI-TOF MS and 73 (5.3%) were identified to the genus level, but no reliable identification was obtained for 20 (1.5%). Among the 1,278 isolates identified to the species level by MALDI-TOF MS, 63 (4.9%) discordant results were initially identified. Most discordant results (42/63) were due to systematic database-related taxonomical differences, 14 were explained by poor discrimination of the MALDI-TOF MS spectra obtained, and 7 were due to errors in the initial conventional identification. An extraction step was required to obtain a valid MALDI-TOF MS identification for 25.6% of the 1,278 valid isolates. In conclusion, our results show that MALDI-TOF MS is a fast and reliable technique which has the potential to replace conventional phenotypic identification for most bacterial strains routinely isolated in clinical microbiology laboratories.
Resumo:
An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.
Resumo:
Effective empirical treatment is of paramount importance to improve the outcome of patients with Staphylococcus aureus bacteraemia. We aimed to evaluate a PCR-based rapid diagnosis of methicillin resistance (GeneXpert MRSA) after early detection of S. aureus bacteraemia using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Patients with a first episode of S. aureus bacteraemia identified using MALDI-TOF MS were randomized in a prospective interventional open study between October 2010 and August 2012. In the control group, antibiotic susceptibility testing was performed after MALDI-TOF MS identification on blood culture pellets. In the intervention group, a GeneXpert MRSA was performed after S. aureus identification. The primary outcome was the performance of GeneXpert MRSA directly on blood cultures. We then assessed the impact of early diagnosis of methicillin resistance on the empirical treatment. In all, 197 episodes of S. aureus bacteraemia were included in the study, of which 106 were included in the intervention group. Median time from MALDI-TOF MS identification to GeneXpert MRSA result was 97 min (range 25-250). Detection of methicillin resistance using GeneXpert MRSA had a sensitivity of 99% and a specificity of 100%. There was less unnecessary coverage of MRSA in the intervention group (17.1% versus 29.2%, p 0.09). GeneXpert MRSA was highly reliable in diagnosing methicillin resistance when performed directly on positive blood cultures. This could help to avoid unnecessary prescriptions of anti-MRSA agents and promote the introduction of earlier adequate coverage in unsuspected cases.
Resumo:
Until recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for the identification of microorganisms remained confined to research laboratories. In the last 2 years, the availability of relatively simple to use MALDI-TOF MS devices, which can be utilized in clinical microbiology laboratories, has changed the laboratory workflows for the identification of pathogens. Recently, the first prospective studies regarding the performance in routine bacterial identification showed that MALDI-TOF MS is a fast, reliable and cost-effective technique that has the potential to replace and/or complement conventional phenotypic identification for most bacterial strains isolated in clinical microbiology laboratories. For routine bacterial isolates, correct identification by MALDI-TOF MS at the species level was obtained in 84.1-93.6% of instances. In one of these studies, a protein extraction step clearly improved the overall valid identification yield, from 70.3% to 93.2%. This review focuses on the current state of use of MALDI-TOF MS for the identification of routine bacterial isolates and on the main difficulties that may lead to erroneous or doubtful identifications.
Resumo:
Background. Early identification of pathogens from blood cultures using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry may optimize the choice of empirical antibiotic therapy in the setting of bloodstream infections. We aimed to assess the impact of this new technology on the use of antibiotic treatment in patients with gram-negative bacteremia. Methods. We conducted a prospective observational study from January to December 2010 to evaluate the sequential and separate impacts of Gram stain reporting and MALDI-TOF bacterial identification performed on blood culture pellets in patients with gram-negative bacteremia. The primary outcome was the impact of MALDI-TOF on empirical antibiotic choice. Results. Among 202 episodes of gram-negative bacteremia, Gram stain reporting had an impact in 42 cases (20.8%). MALDI-TOF identification led to a modification of empirical therapy in 71 of all 202 cases (35.1%), and in 16 of 27 cases (59.3%) of monomicrobial bacteremia caused by AmpC-producing Enterobacteriaceae. The most frequently observed impact was an early appropriate broadening of the antibiotic spectrum in 31 of 71 cases (43.7%). In total, 143 of 165 episodes (86.7%) of monomicrobial bacteremia were correctly identified at genus level by MALDI-TOF. Conclusions. In a low prevalence area for extended spectrum betalactamases (ESBL) and multiresistant gram-negative bacteria, MALDI-TOF performed on blood culture pellets had an impact on the clinical management of 35.1% of all gram-negative bacteremia cases, demonstrating a greater impact than Gram stain reporting. Thus, MALDI-TOF could become a vital second step beside Gram stain in guiding the empirical treatment of patients with bloodstream infection.
Resumo:
Conventional methods are sometimes insufficient to identify human bacterial pathogens, and alternative techniques, often molecular, are required. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified with a valid score 45.9% of 410 clinical isolates from 207 different difficult-to-identify species having required 16S rRNA gene sequencing. MALDI-TOF MS might represent an alternative to 16S rRNA gene sequencing.
Resumo:
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.
Resumo:
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.
Resumo:
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.
Resumo:
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.