989 resultados para augmented Lagrangian function
Resumo:
This article presents a new approach to minimize the losses in electrical power systems. This approach considers the application of the primal-dual logarithmic barrier method to voltage magnitude and tap-changing transformer variables, and the other inequality constraints are treated by augmented Lagrangian method. The Lagrangian function aggregates all the constraints. The first-order necessary conditions are reached by Newton's method, and by updating the dual variables and penalty factors. Test results are presented to show the good performance of this approach.
Resumo:
This paper presents a new approach to solve the Optimal Power Flow problem. This approach considers the application of logarithmic barrier method to voltage magnitude and tap-changing transformer variables and the other constraints are treated by augmented Lagrangian method. Numerical test results are presented, showing the effective performance of this algorithm. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new algorithm for optimal power flow problem. The algorithm is based on Newton's method which it works with an Augmented Lagrangian function associated with the original problem. The function aggregates all the equality and inequality constraints and is solved using the modified-Newton method. The test results have shown the effectiveness of the approach using the IEEE 30 and 638 bus systems.
Resumo:
Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
Resumo:
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
Resumo:
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
Resumo:
A new approach for solving the optimal power flow (OPF) problem is established by combining the reduced gradient method and the augmented Lagrangian method with barriers and exploring specific characteristics of the relations between the variables of the OPF problem. Computer simulations on IEEE 14-bus and IEEE 30-bus test systems illustrate the method. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.
Resumo:
Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A new approach called the Modified Barrier Lagrangian Function (MBLF) to solve the Optimal Reactive Power Flow problem is presented. In this approach, the inequality constraints are treated by the Modified Barrier Function (MBF) method, which has a finite convergence property: i.e. the optimal solution in the MBF method can actually be in the bound of the feasible set. Hence, the inequality constraints can be precisely equal to zero. Another property of the MBF method is that the barrier parameter does not need to be driven to zero to attain the solution. Therefore, the conditioning of the involved Hessian matrix is greatly enhanced. In order to show this, a comparative analysis of the numeric conditioning of the Hessian matrix of the MBLF approach, by the decomposition in singular values, is carried out. The feasibility of the proposed approach is also demonstrated with comparative tests to Interior Point Method (IPM) using various IEEE test systems and two networks derived from Brazilian generation/transmission system. The results show that the MBLF method is computationally more attractive than the IPM in terms of speed, number of iterations and numerical conditioning. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.
Resumo:
Abstract not available
Resumo:
This work proposes a computational methodology to solve problems of optimization in structural design. The application develops, implements and integrates methods for structural analysis, geometric modeling, design sensitivity analysis and optimization. So, the optimum design problem is particularized for plane stress case, with the objective to minimize the structural mass subject to a stress criterion. Notice that, these constraints must be evaluated at a series of discrete points, whose distribution should be dense enough in order to minimize the chance of any significant constraint violation between specified points. Therefore, the local stress constraints are transformed into a global stress measure reducing the computational cost in deriving the optimal shape design. The problem is approximated by Finite Element Method using Lagrangian triangular elements with six nodes, and use a automatic mesh generation with a mesh quality criterion of geometric element. The geometric modeling, i.e., the contour is defined by parametric curves of type B-splines, these curves hold suitable characteristics to implement the Shape Optimization Method, that uses the key points like design variables to determine the solution of minimum problem. A reliable tool for design sensitivity analysis is a prerequisite for performing interactive structural design, synthesis and optimization. General expressions for design sensitivity analysis are derived with respect to key points of B-splines. The method of design sensitivity analysis used is the adjoin approach and the analytical method. The formulation of the optimization problem applies the Augmented Lagrangian Method, which convert an optimization problem constrained problem in an unconstrained. The solution of the Augmented Lagrangian function is achieved by determining the analysis of sensitivity. Therefore, the optimization problem reduces to the solution of a sequence of problems with lateral limits constraints, which is solved by the Memoryless Quasi-Newton Method It is demonstrated by several examples that this new approach of analytical design sensitivity analysis of integrated shape design optimization with a global stress criterion purpose is computationally efficient