977 resultados para Trans-1,2-dibromo-2-styrylpyridine
Resumo:
The simple halogenation of alkynes in conventional organic reactions gives a blend of cis and trans isomers. It is proposed then, a synthesis of stereospecific halogenation of alkynes in trans position, using palladacycle as intermediaries. The recrystallization of the compound obtained by bromination of 2-Styrylpyridine, with cyclepalladium intermediary results in a single crystal, which is subjected to X-ray diffraction. The crystal packing is established through weak interactions of three types. The first one is of the type pi x pi interactions, from symmetry operation, between the centroids. The second one is of the type C-X center dot center dot center dot pi interactions. And the last type is an anomalous intermolecular interaction between halogens, C-X center dot center dot center dot X-C, with bond distances smaller than the sum of the van der Waals radii. The conformation on the C=C bond is trans and the dihedral angle between the aromatic rings is (with esd approximate) 18.1(3)degrees. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
N-Methylation of ligands containing a trans-1,2-diaminocyclohexane core and multiple stereogenic centres is shown to provide the product of the opposite configuration in significant enantiomeric excess, in the addition of diethylzinc to aldehydes. Some of the ligands were effective in an asymmetric Michael addition. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis, spectra and X-ray crystal structure of N,N`-(+/-)-trans-1,2-cyclohexylenebis(3-ethoxysalicylideneamine) H-2(t-3-EtOsalchxn), a salen-type ligand, are reported. The Schiff base was characterized by elemental analysis, m.p., IR, electronic spectra, H-1 and C-13 NMR spectra. The spectra are discussed and compared with those of N,N`-(+/-)-trans-1,2-cyclohexylenebis(salicylideneamine), H-2(t-salchxn). The electronic and IR spectra were also resolved by deconvolution. The influence of the ethoxy group on the IR, electronic spectrum, H-1 and C-13 NMR spectra is discussed. Strong intramolecular forces are present as supported by the IR and H-1 NMR spectra and the X-ray crystal structure. An intermolecular hydrogen bond is observed and appears twice in a pair of molecules in the unit cell. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The synthesis, characterization and thermal analysis of the novel cyclometallated compounds [Pd-2(dmba)(2)Cl-2(mu-bpe)] (1), [Pd-2(dmba)(2)(N-3)(2)(mu-bpe)] (2), [Pd-2(dmba)(2)(NCO)(2)(mu-bpe)] (3), [Pd-2(dmba)(2)(SCN)(2)(mu-bpe)] (4), [Pd-2(dmba)(2)(NO3)(2)(mu-bpe)] (5) (bpe=trans-1,2-bis(4-pyridyl)ethylene; dmba=N,N-dimethylbenzylamine) are described. The thermal stability of [Pd-2(dmba)(2)X-2(mu-bpe)] complexes varies in the sequence 1 > 4 > 3 > 2 > 5. The final residues of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.
Resumo:
Photochemical and photophysical properties of fac-[Re(CO)(3)(Clphen)(trans-L)](+) complexes, Clphen = 5-chloro-1,10-phenathroline and L = 1,2-bis(4-pyridyl)ethylene, bpe, or 4-styrylpyridine, stpy, were investigated to complement the understanding of intramolecular energy transfer process in tricarbonyl rhenium(I) complexes having an electron withdrawing group attached to polypyridyl ligands. These new compounds were synthesized, characterized and the photoisomerization quantum yields were accurately determined by (1)H NMR spectroscopy. The true quantum yields for fac-[Re(CO)(3)(Clphen) (trans-bpe)](+) were constant (Phi = 0.55) at all investigated irradiation wavelengths. However, for fac-[Re(CO)(3)(Clphen)(trans-stpy)](+), similar true quantum yields were observed only at higher energy irradiation (Phi(313 nm) = 0.53 and Phi(365 nm) = 0.57), but it decreased significantly at 404 nm (Phi = 0.41). These results indicated different deactivation pathways for the trans-stpy complex photoisomerization. Quantum yields decreased as the (3)IL(trans-L) and (3)MLCT(Re -> NN) excited states become closer and the behavior was discussed in terms of the excited state energy gaps. Additionally, luminescence properties of photoproducts, fac-[Re(CO)(3)(Clphen)(cis-L)](+), were also investigated in different environments to analyze the relative energy of the (3)MLCT(Re -> Clphen) excited state for each compound. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The thermal decomposition reaction of trans-3,6-dimethyl-3,6-diphenyl-1,2,4,5-tetraoxacyclohexane (acetophenone cyclic diperoxide, DPAF), in different solvents (methanol, 1,4-dioxane, acetonitrile and 2-propanol/benzene mixtures) in the initial concentration and temperature ranges of (4.2-10.5) x 10-3 M and 140.0 to 185.0 ºC, respectively, follows a pseudo first order kinetic law up to at least 70% DPAF conversion. An important solvent effect on the rate constant values, activation parameters (DH# and DS#) and reaction products obtained in different solvents is detected, showing that the reaction is accelerated in alcohols.
Resumo:
Static electric dipole polarizabilities and first hyperpolarizabilites have been calculated for the title molecules and their 3' and 4'-nitro derivatives at ab-initio Hartree- Fock/6-31G(d, p) level. The influence of the pivotal p vacant 3A elements (B, Al or Ga) substitution on the electrical properties of these molecules is detailed. The axial vector components of the first hyperpolarizabilities β(0) of the push-pull 4'-nitro derivatives, -18.2×10-32 esu (B), -21.1×10-32 esu (Al) and -20.8×10-32 esu (Ga) are calculated to be as much as fourfold larger then that calculated for the p-nitroaniline, a reference organic molecule for comparison for this type of molecular property.
Resumo:
The vibrational overtone spectra 0f the liquid phase 1,2-dichloroethane and 1,2-dibromoethane in the spectral regions of CH stretching local mode overtones corresponding to delta v CH= = 2 to delta v CH=5 are reported. The observed spectral features are assigned using the local mode model. LocaI mode frequencies WCH and diagonal local mode anharmonicities XCH are obtained from an analysis of the spectra. The local-local combinations observed are interpreted on the basis of a coupled CH oscillator model hamiltonian. Local-normal combinations show complex structures and their possible assignments are given.
Resumo:
This work describes the synthesis of a series of sialylmimetic neoglycoconjugates represented by 1,4-disubstituted 1,2,3-triazole-sialic acid derivatives containing galactose modified at either C-1 or C-6 positions, glucose or gulose at C-3 position, and by the amino acid derivative 1,2,3-triazole fused threonine-3-O-galactose as potential TcTS inhibitors and anti-trypanosomal agents. This series was obtained by Cu(I)-catalysed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-functionalized sugars 1-N(3)-Gal (commercial), 6-N(3)-Gal, 3-N(3)-Glc and 3-N(3)-Gul with the corresponding alkyne-based 2-propynyl-sialic acid, as well as by click chemistry reaction between the amino acid N(3)-ThrOBn with 3-O-propynyl-GalOMe. The 1,2,3-triazole linked sialic acid-6-O-galactose and the sialic acid-galactopyranoside showed high Trypanosoma cruzi trans-sialidase (TcTS) inhibitory activity at 1.0 mM (approx. 90%), whilst only the former displayed relevant trypanocidal activity (IC(50) 260 mu M). These results highlight the 1,2,3-triazole linked sialic acid-6-O-galactose as a prototype for further design of new neoglycoconjugates against Chagas' disease. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Bifunctional chiral primary amine 8 containing an (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-benzimidazole unit is used as a general organocatalyst for the Michael addition of α,α-branched aldehydes to nitroalkenes and maleimides. The reactions take place, with 20 mol % of catalyst in dichloromethane at rt for nitroalkenes and with 15 mol % catalyst loading in toluene at 10 °C for maleimides, in good yields and enantioselectivities. DFT calculations demonstrate the bifunctional character of this organocatalyst activating the aldehyde by enamine formation and the Michael acceptor by double hydrogen bonding.
Resumo:
The reactions of meso-1,2-bis(phenylsulfinyl)ethane (meso-bpse) with Ph2SnCl2, 2-phenyl-1,3-dithiane trans-1-trans-3-dioxide (pdtd) with n-Bu2SnCl2 and 1,2-cis-bis-(phenylsulfinyl)ethene (rac-,cis-cbpse) with Ph2SnCl2, in 1:1 molar ratio, yielded [{Ph2SnCl2(meso-bpse)}n], [{n-Bu2SnCl2(pdtd)}2] and [{Ph2SnCl2(rac,cis-cbpse)}x] (x = 2 or n), respectively. All adducts were studied by IR, Mössbauer and 119Sn NMR spectroscopic methods, elemental analysis and single crystal X-ray diffractometry. The X-ray crystal structure of [{Ph2SnCl2(meso-bpse)}n] revealed the occurrence of infinite chains in which the tin(IV) atoms appear in a distorted octahedral geometry with Cl atoms in cis and Ph groups in trans positions. The X-ray crystal structure of [{n-Bu2SnCl2(pdtd)}2] revealed discrete centrosymmetric dimeric species in which the tin(IV) atoms possess a distorted octahedral geometry with bridging disulfoxides in cis and n-butyl moieties in trans positions. The spectroscopic data indicated that the adduct containing the rac,cis-cbpse ligand can be dimeric or polymeric. The X-ray structural analysis of the free rac-,cis-cbpse sulfoxide revealed that the crystals belong to the C2/c space group.
Metal-free synthesis of indanes by iodine(III)-mediated ring contraction of 1, 2-dihydronaphthalenes
Resumo:
A metal-free protocol was developed to synthesize indanes by ring contraction of 1, 2-dihydronaphthalenes promoted by PhI(OH)OTs (HTIB or Koser's reagent). This oxidative rearrangement can be performed in several solvents (MeOH, CH3CN, 2 , 2, 2-trifluoroethanol (TFE), 1 , 1, 1, 3, 3, 3-hexafluoroisopropanol (HFIP), and a 1:4 mixture of TFE:CH2Cl2) under mild conditions. The ring contraction diastereoselectively gives functionalized trans-1, 3-disubstituted indanes, which are difficult to obtain in synthetic organic chemistry
Resumo:
In the title compound, C(16)H(12)N(2)O(2)S, the carbonylthiourea group forms dihedral angles of 75.4 (1) and 13.1 (2)degrees, respectively, with the naphthalene ring system and furan ring. The molecule adopts a trans-cis configuration with respect to the positions of the furoyl and naphthyl groups relative to the S atom across the thiourea C-N bonds. This geometry is stabilized by an N-H center dot center dot center dot center dot O intramolecular hydrogen bond. In the crystal structure, molecules are linked by N-H center dot center dot center dot S hydrogen bonds, forming centrosymmetric dimers which are interlinked through C-H center dot center dot center dot pi interactions.
Resumo:
The reaction of the bis(1,2-diamine) copper(II) complexes of racemic propane-1,2-diamine (pn) and 2-methylpropane-1,2-diamine (dmen) with formaldehyde and nitroethane in methanol under basic conditions yields minor macrocyclic condensation products in addition to the major acyclic products. Where C-pendant methyl groups on the pair of coordinated diamines are in cis dispositions, the first -NH-CH2-C(CH3)(NO2)-CH2-NH- ring formation occurs at amine pairs distant from these C-methyl substituents, and further reaction to yield a macrocycle is not observed. However, where the C-methyl substituents are in trans dispositions, the chemistry proceeds to yield the macrocycle. Commencing with pn, trans-(6,13-diammonio-2,6,9,13-tetramethyl-1,4,7,10-tetraazacyclotetradecane)copper(II) perchlorate formed and crystallized in the space group P2(1)/n, with a 9.782(2), b 9.2794(6), c 17.017(4) Angstrom, beta 103.24(1)degrees. The copper ion is found in a square-planar environment, with the two methyl groups of the pn residues and the pairs of introduced pendant groups all in trans arrangements.