180 resultados para Syllable


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic classification of anurans (frogs) has received increasing attention for its promising application in biological and environment studies. In this study, a novel feature extraction method for frog call classification is presented based on the analysis of spectrograms. The frog calls are first automatically segmented into syllables. Then, spectral peak tracks are extracted to separate desired signal (frog calls) from background noise. The spectral peak tracks are used to extract various syllable features, including: syllable duration, dominant frequency, oscillation rate, frequency modulation, and energy modulation. Finally, a k-nearest neighbor classifier is used for classifying frog calls based on the results of principal component analysis. The experiment results show that syllable features can achieve an average classification accuracy of 90.5% which outperforms Mel-frequency cepstral coefficients features (79.0%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic feature based speech (syllable) rate estimation and syllable nuclei detection are important problems in automatic speech recognition (ASR), computer assisted language learning (CALL) and fluency analysis. A typical solution for both the problems consists of two stages. The first stage involves computing a short-time feature contour such that most of the peaks of the contour correspond to the syllabic nuclei. In the second stage, the peaks corresponding to the syllable nuclei are detected. In this work, instead of the peak detection, we perform a mode-shape classification, which is formulated as a supervised binary classification problem - mode-shapes representing the syllabic nuclei as one class and remaining as the other. We use the temporal correlation and selected sub-band correlation (TCSSBC) feature contour and the mode-shapes in the TCSSBC feature contour are converted into a set of feature vectors using an interpolation technique. A support vector machine classifier is used for the classification. Experiments are performed separately using Switchboard, TIMIT and CTIMIT corpora in a five-fold cross validation setup. The average correlation coefficients for the syllable rate estimation turn out to be 0.6761, 0.6928 and 0.3604 for three corpora respectively, which outperform those obtained by the best of the existing peak detection techniques. Similarly, the average F-scores (syllable level) for the syllable nuclei detection are 0.8917, 0.8200 and 0.7637 for three corpora respectively. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mandarin Chinese is based on characters which are syllabic in nature and morphological in meaning. All spoken languages have syllabiotactic rules which govern the construction of syllables and their allowed sequences. These constraints are not as restrictive as those learned from word sequences, but they can provide additional useful linguistic information. Hence, it is possible to improve speech recognition performance by appropriately combining these two types of constraints. For the Chinese language considered in this paper, character level language models (LMs) can be used as a first level approximation to allowed syllable sequences. To test this idea, word and character level n-gram LMs were trained on 2.8 billion words (equivalent to 4.3 billion characters) of texts from a wide collection of text sources. Both hypothesis and model based combination techniques were investigated to combine word and character level LMs. Significant character error rate reductions up to 7.3% relative were obtained on a state-of-the-art Mandarin Chinese broadcast audio recognition task using an adapted history dependent multi-level LM that performs a log-linearly combination of character and word level LMs. This supports the hypothesis that character or syllable sequence models are useful for improving Mandarin speech recognition performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen en español. Resumen basado en el de la publicación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. DESIGN Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. RESULTS Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. CONCLUSIONS In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Final Syllable Lengthening (FSL) has been extensively examined in infant vocalizations in order to determine whether its basis is biological or learned. Findings suggest there may be a U-shaped developmental trajectory for FSL. The present study sought to verify this pattern and to determine whether vocal maturity and deafness influence FSL. Eight normally hearing infants, aged 0 ; 3 to 1 ; 0, and eight deaf infants, aged 0 ; 8 to 4 ; 0, were examined at three levels of prelinguistic vocal development: precanonical, canonical, and postcanonical. FSL was found at all three levels suggesting a biological basis for this phenomenon. Individual variability was, however, considerable. Reduction in the magnitude of FSL across the three sessions provided some support for a downward trend for FSL in infancy. Findings further indicated that auditory deprivation can significantly affect temporal aspects of infant speech production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes publisher's advertisement, p. [4] of wrapper.