972 resultados para Statistical Computation
Resumo:
Collecting data via a questionnaire and analyzing them while preserving respondents’ privacy may increase the number of respondents and the truthfulness of their responses. It may also reduce the systematic differences between respondents and non-respondents. In this paper, we propose a privacy-preserving method for collecting and analyzing survey responses using secure multi-party computation (SMC). The method is secure under the semi-honest adversarial model. The proposed method computes a wide variety of statistics. Total and stratified statistical counts are computed using the secure protocols developed in this paper. Then, additional statistics, such as a contingency table, a chi-square test, an odds ratio, and logistic regression, are computed within the R statistical environment using the statistical counts as building blocks. The method was evaluated on a questionnaire dataset of 3,158 respondents sampled for a medical study and simulated questionnaire datasets of up to 50,000 respondents. The computation time for the statistical analyses linearly scales as the number of respondents increases. The results show that the method is efficient and scalable for practical use. It can also be used for other applications in which categorical data are collected.
Resumo:
Research has shown that applying the T-2 control chart by using a variable parameters (VP) scheme yields rapid detection of out-of-control states. In this paper, the problem of economic statistical design of the VP T-2 control chart is considered as a double-objective minimization problem with the statistical objective being the adjusted average time to signal and the economic objective being expected cost per hour. We then find the Pareto-optimal designs in which the two objectives are met simultaneously by using a multi-objective genetic algorithm. Through an illustrative example, we show that relatively large benefits can be achieved by applying the VP scheme when compared with usual schemes, and in addition, the multi-objective approach provides the user with designs that are flexible and adaptive.
Resumo:
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.
Resumo:
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.
Resumo:
This article deals with the efficiency of fractional integration parameter estimators. This study was based on Monte Carlo experiments involving simulated stochastic processes with integration orders in the range]-1,1[. The evaluated estimation methods were classified into two groups: heuristics and semiparametric/maximum likelihood (ML). The study revealed that the comparative efficiency of the estimators, measured by the lesser mean squared error, depends on the stationary/non-stationary and persistency/anti-persistency conditions of the series. The ML estimator was shown to be superior for stationary persistent processes; the wavelet spectrum-based estimators were better for non-stationary mean reversible and invertible anti-persistent processes; the weighted periodogram-based estimator was shown to be superior for non-invertible anti-persistent processes.
Resumo:
Heterogeneity in lifetime data may be modelled by multiplying an individual's hazard by an unobserved frailty. We test for the presence of frailty of this kind in univariate and bivariate data with Weibull distributed lifetimes, using statistics based on the ordered Cox-Snell residuals from the null model of no frailty. The form of the statistics is suggested by outlier testing in the gamma distribution. We find through simulation that the sum of the k largest or k smallest order statistics, for suitably chosen k , provides a powerful test when the frailty distribution is assumed to be gamma or positive stable, respectively. We provide recommended values of k for sample sizes up to 100 and simple formulae for estimated critical values for tests at the 5% level.
Resumo:
A supersaturated design (SSD) is an experimental plan, useful for evaluating the main effects of m factors with n experimental units when m > n - 1, each factor has two levels and when the first-order effects of only a few factors are expected to have dominant effects on the response. Use of these plans can be extremely cost-effective when it is necessary to screen hundreds or thousands of factors with a limited amount of resources. In this article we describe how to use cyclic balanced incomplete block designs and regular graph designs to construct E (s(2)) optimal and near optimal SSDs when m is a multiple of n - 1. We also provide a table that can be used to construct these designs for screening thousands of factors. We also explain how to obtain SSDs when m is not a multiple of n - 1. Using the table and the approaches given in this paper, SSDs can be developed for designs with up to 24 runs and up to 12,190 factors.
Resumo:
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.
Resumo:
The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.
Resumo:
In this article, we compare three residuals based on the deviance component in generalised log-gamma regression models with censored observations. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. For all cases studied, the empirical distributions of the proposed residuals are in general symmetric around zero, but only a martingale-type residual presented negligible kurtosis for the majority of the cases studied. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for the martingale-type residual in generalised log-gamma regression models with censored data. A lifetime data set is analysed under log-gamma regression models and a model checking based on the martingale-type residual is performed.
Resumo:
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1-39.], and (ii) an approximation to the one proposed by Barndorff-Nielsen [Barndorff-Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33-53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655-661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff-Nielsen`s adjustment.
Resumo:
In this article, we discuss inferential aspects of the measurement error regression models with null intercepts when the unknown quantity x (latent variable) follows a skew normal distribution. We examine first the maximum-likelihood approach to estimation via the EM algorithm by exploring statistical properties of the model considered. Then, the marginal likelihood, the score function and the observed information matrix of the observed quantities are presented allowing direct inference implementation. In order to discuss some diagnostics techniques in this type of models, we derive the appropriate matrices to assessing the local influence on the parameter estimates under different perturbation schemes. The results and methods developed in this paper are illustrated considering part of a real data set used by Hadgu and Koch [1999, Application of generalized estimating equations to a dental randomized clinical trial. Journal of Biopharmaceutical Statistics, 9, 161-178].
Resumo:
We consider the issue of performing accurate small-sample likelihood-based inference in beta regression models, which are useful for modelling continuous proportions that are affected by independent variables. We derive small-sample adjustments to the likelihood ratio statistic in this class of models. The adjusted statistics can be easily implemented from standard statistical software. We present Monte Carlo simulations showing that inference based on the adjusted statistics we propose is much more reliable than that based on the usual likelihood ratio statistic. A real data example is presented.
Resumo:
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We derive a simple matrix formula for second-order covariances of maximum-likelihood estimators in this class of models. The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors. Some simulation results show that the second-order covariances can be quite pronounced in small to moderate sample sizes. We also present empirical applications.