956 resultados para Receptors, Atrial Natriuretic Factor
Resumo:
STUDY OBJECTIVE; To evaluate interactive effects of volemic status and positive end-expiratory pressure (PEEP) on the plasma levels of atrial natriuretic factor (ANF) in assist-controlled mechanical ventilation (MV). DESIGN: Three successive protocols applied in randomized order to each participant. SETTING: Clinical investigation laboratory. PARTICIPANTS: Twenty-one young, healthy adults. INTERVENTIONS: The three protocols were as follows: (1) MV+PEEP, normovolemia; (2) MV+PEEP, hypervolemia; and (3) spontaneous breathing (SB), hypervolemia. In protocols 1 and 2, a preliminary period of SB lasting 2 h was followed by MV alone (0.5 h), MV+20 cm H2O PEEP (1 h), and a recovery period of SB (1.5 h). Hypervolemia was induced by the continuous i.v. infusion of 3 L of 0.9% NaCl in 5 h (protocols 2 and 3). MEASUREMENTS AND RESULTS: Heart rate, BP, and the plasma levels of immunoreactive ANF and catecholamines were measured serially. During hypervolemia, ANF significantly decreased when PEEP was added to MV (protocol 2: from 31.1 +/- 2.7 to 20.7 +/- 1.5 fmol/mL; p < 0.01). This did not occur in normovolemia (protocol 1: from 20.0 +/- to 16.7 +/- 1.2 fmol/mL; p = NS). The different effects of MV+PEEP in normovolemia and hypervolemia were not related to differences in circulating catecholamine levels. CONCLUSIONS: These results demonstrate for the first time (to our knowledge) that volemic status modulates the response of plasma ANF to PEEP in humans. The role of ANF in the water and salt retention induced by MV with PEEP might be limited to hypervolemic conditions.
Resumo:
The renal and systemic effects of a synthetic atrial natriuretic peptide (ANP) corresponding to the sequence of the human hormone was investigated in normal volunteers. Each subject was infused for 4 hours on 3 different days at a one week interval with either ANP (0.5 or 1 microgram/min) or its vehicle. ANP enhanced natriuresis without simultaneously modifying glomerular filtration rate. ANP did, however, reduce effective renal plasma flow. In spite of the increased natriuresis, the activity of the renin-angiotensin-aldosterone system was reduced during ANP infusion. ANP induced a transient increase in skin blood flow. No change in blood pressure and heart rate occurred in the course of the experiment.
Resumo:
The synthesis of peptides which have the natriuretic and vasodilator properties of the atrial natriuretic factor has made it possible to study the physiological role of this recently discovered hormonal system. In addition to renal effects, atrial natriuretic peptides exert vascular, hemodynamic and endocrine actions which may participate in the regulation of plasma and interstitial volume as well as arterial blood pressure. Its acute hypotensive effect, which was observed in normal volunteers and in patients with cardiac failure or hypertension, is not entirely explained by its direct vasodilator effect. The complexity of its role is demonstrated by its inhibiting action on the synthesis and/or the activity of other vasoactive hormones. The observed increase in hematocrit suggests that vascular permeability may be enhanced; the resulting consequences, e.g. on blood viscosity, still need to be elucidated. When infusing atrial natriuretic peptides, there exists a clear delay between the moment steady-state plasma levels are achieved and peak effect occurs. This renders the interpretation of the results very difficult. At this moment, the physiological role of atrial natriuretic peptides as well as their potential future use as therapeutic agents cannot yet be fully appreciated.
Resumo:
Myocardial cells of mammals release a peptide with diuretic, natriuretic and vasodilating properties into the circulation. This peptide, called atrial natriuretic factor, is also involved in the regulation of plasma volume and, in addition, is instrumental in suppressing the activity of the renin-angiotensin-aldosterone system. The renal effects of the atrial natriuretic factor become less pronounced when systemic blood pressure is lowered. The auricular natriuretic factor seems to play an important role in cardiovascular regulation due to both its renal and extrarenal actions.
Resumo:
Atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) are important dilators of the pulmonary circulation during the perinatal period. We compared the responses of pulmonary arteries (PA) and veins (PV) of newborn lambs to these peptides. ANP caused a greater relaxation of PA than of PV, and CNP caused a greater relaxation of PV than of PA. RIA showed that ANP induced a greater increase in cGMP content of PA than CNP. In PV, ANP and CNP caused a similar moderate increase in cGMP content. Receptor binding study showed more specific binding sites for ANP than for CNP in PA and more for CNP than for ANP in PV. Relative quantitative RT-PCR for natriuretic peptide receptor A (NPR-A) and B (NPR-B) mRNAs show that, in PA, NPR-A mRNA is more prevalent than NPR-B mRNA, whereas, in PV, NPR-B mRNA is more prevalent than NPR-A mRNA. In conclusion, in the pulmonary circulation, arteries are the major site of action for ANP, and veins are the major site for CNP. Furthermore, the differences in receptor abundance and the involvement of a cGMP-independent mechanism may contribute to the heterogeneous effects of the natriuretic peptides in PA and PV of newborn lambs.
Resumo:
Atrial natriuretic peptide is cleared from plasma by clearance receptors and by enzymatic degradation by way of a neutral metalloendopeptidase. Inhibition of neutral metalloendopeptidase activity appears to provide an interesting approach to interfere with metabolism of atrial natriuretic peptide to enhance the renal and haemodynamic effects of endogenous atrial natriuretic peptide. In this study, the effects of SCH 34826, a new orally active neutral metalloendopeptidase inhibitor, have been evaluated in a single-blind, placebo-controlled study involving eight healthy volunteers who had maintained a high sodium intake for 5 days. SCH 34826 had no effect on blood pressure or heart rate in these normotensive subjects. SCH 34826 promoted significant increases in excretion of urinary sodium, phosphate, and calcium. The cumulative 5-hour urinary sodium excretion was 15.7 +/- 7.3 mmol for the placebo and 22.9 +/- 5, 26.7 +/- 6 (p less than 0.05), and 30.9 +/- 6.8 mmol (p less than 0.01) for the 400, 800, and 1600 mg SCH 34826 doses, respectively. During the same time interval, the cumulative urinary phosphate excretion increased by 0.3 +/- 0.4 mmol after placebo and by 1.5 +/- 0.3 (p less than 0.01), 1.95 +/- 0.3 (p less than 0.01), and 2.4 +/- 0.4 mmol (p less than 0.001) after 400, 800, and 1600 mg SCH 34826, respectively. There was no change in diuresis or excretion of urinary potassium and uric acid. The natriuretic response to SCH 34826 occurred in the absence of any change in plasma atrial natriuretic peptide levels but was associated with a dose-dependent elevation of urinary atrial natriuretic peptide and cyclic guanosine monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
To assess the variability of the response to exogenous atrial natriuretic peptide (ANP), it was infused at the rate of 1 microgram/min for 2 h in 6 salt-loaded normal volunteers under controlled conditions on 2 occasions at an interval of 1 week. The effect on solute excretion and the haemodynamic and endocrine actions were highly reproducible. The constant ANP infusion caused a delayed and prolonged excretion of sodium, chloride and calcium, no change in potassium or phosphate excretion or in glomerular filtration rate but a marked decrease in renal plasma flow. Blood pressure, heart rate and the plasma levels of angiotensin II, aldosterone, arginine vasopressin and plasma renin activity were unaltered. The effect of a 2-h infusion of ANP 0.5 microgram/min or its vehicle on apparent hepatic blood flow (HBF) was also studied in 14 normal volunteers by measuring the indocyanine green clearance. A 21% decrease in HBF was observed in subjects who received the ANP infusion (p less than 0.01 vs vehicle). Thus, ANP infused at a dose that did not lower blood pressure decreased both renal and liver blood flow in normotensive volunteers. The renal and endocrine responses to ANP were reproducible over a 1-week interval.
Resumo:
Atrial natriuretic peptides (ANP) exert vasodilating and natriuretic actions. The present study was undertaken to test the effect of low dose infusions of synthetic ANP on hemodynamic and humoral variables of patients with severe heart failure. Eight patients, aged 26 to 71 years, with severe congestive heart failure due to ischemic heart disease or idiopathic dilated cardiomyopathy were included in the study. Synthetic human (3-28) ANP was infused at doses ranging from 0.5 to 2 micrograms/min for up to 3 h. Pulmonary capillary wedge pressure fell from 24 +/- 1 to 16 +/- 2 mm Hg (mean +/- SEM) (p less than 0.01) and cardiac index tended to rise from 2 +/- 0.2 to 2.3 +/- 0.2 L/min/m2 (NS), while blood pressure and heart rate did not change. One patient experienced a marked drop in pulmonary capillary wedge and arterial blood pressure that necessitated the administration of saline. ANP infusion did not alter plasma renin activity or plasma aldosterone, norepinephrine, or vasopressin levels. It decreased plasma epinephrine levels from 0.472 +/- 0.077 to 0.267 +/- 0.024 nmol/L (p less than 0.05). Plasma ANP levels were markedly elevated in all patients before initiating the infusion. They had no predictive value for the hemodynamic response to exogenous ANP. No correlation was observed between the hemodynamic effects of ANP and those induced by the subsequently administered converting enzyme inhibitor captopril, which seemed to improve cardiac function more consistently.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The kinetics of atrial natriuretic peptides (ANP) and the kinetic profile of their effect on blood pressure and renal hemodynamic and electrolyte excretion were investigated in 20 salt-loaded healthy volunteers during and after constant rate infusion. At steady state, mean plasma concentrations of ANP were measured at 210, 430, and 2990 pg/ml and mean systemic clearance was 2.6, 2.5, and 1.7 L/min for ANP infusion rates of 0.5, 1, and 5 micrograms/min, respectively, which corresponds to the clearance rate of other vasoactive peptide hormones. The apparent volume of distribution averaged 17 L and the mean half-life was 4.5 minutes. ANP induced dose-related effects on systemic and renal hemodynamic, as well as urinary electrolyte excretion, albeit with a time lag between onset and full effect.
Resumo:
A synthetic human atrial natriuretic peptide of 26 aminoacids [human (3-28)ANP or hANP] was infused into normal male volunteers. Six subjects were infused for 4 h at 1-wk intervals with either hANP at the rate of 0.5 or 1.0 microgram/min or its vehicle in a single-blind randomized order. Human (3-28)ANP at the dose of 0.5 microgram/min raised immunoreactive plasma ANP levels from 104 +/- 17 to 221 +/- 24 pg/ml (mean +/- SEM), but it induced no significant change in blood pressure, heart rate, effective renal plasma flow, glomerular filtration rate, or renal electrolyte excretion. At the rate of 1.0 microgram/min, human (3-28)ANP increased immunoreactive plasma ANP levels from 89 +/- 12 to 454 +/- 30 pg/ml. It reduced effective renal plasma flow from 523 +/- 40 to 453 +/- 38 ml/min (P less than 0.05 vs. vehicle), but left glomerular filtration rate unchanged. Natriuresis rose from 207 +/- 52 to 501 +/- 69 mumol/min (P less than 0.05 vs. vehicle) and urinary magnesium excretion from 3.6 +/- 0.5 to 5.6 +/- 0.5 mumol/min (P less than 0.01 vs. vehicle). The excretion rate of the other electrolytes, blood pressure, and heart rate were not significantly modified. At both doses, human (3-28)ANP tended to suppress the activity of the renin-angiotensin-aldosterone system. In 3 additional volunteers, the skin blood flow response to human (3-28)ANP, infused for 4 h at the rate of 1.0 microgram/min, was studied by means of a laser-doppler flowmeter. The skin blood flow rose during the first 2 h of peptide administration, then fell progressively to values below baseline. After the infusion was discontinued, it remained depressed for more than 2 h. Thus, in normal volunteers, human (3-28)ANP at the dose of 1.0 microgram/min produced results similar to those obtained previously with rat (3-28)ANP. It enhanced natriuresis without changing the glomerular filtration rate while effective renal plasma flow fell. It also induced a transient vasodilation of the skin vascular bed.
Resumo:
The effect of a synthetic atrial natriuretic peptide (h-ANP, 25 amino acids, Wy-47.663) on blood pressure, renal electrolyte excretion, plasma catecholamines, and plasma renin activity was studied in nine patients with cirrhosis of the liver and ascites. The peptide was infused intravenously at 24-h intervals for 2 h in groups of four patients each in two different doses (0.015 and 0.075 micrograms/kg/min or 0.06 and 0.3 micrograms/kg/min). A control experiment with the vehicle was performed in all patients. In three patients h-ANP (1 and 2 micrograms/kg i.v.) was administered as an intravenous bolus injection. Consistent falls in blood pressure were observed during h-ANP infusion only with the two higher doses. The two lower infused doses induced a consistent natriuresis; this renal response was abolished when the two larger doses were used. When given as a bolus, h-ANP had a natriuretic effect comparable to that of the two lower doses of infused h-ANP. Plasma catecholamines and plasma renin activity increased during infusion of the two higher doses of h-ANP. It thus appears that in patients with cirrhosis and ascites, the natriuretic effect of infused h-ANP decreases rather than increases when the doses are raised. Bolus administration of h-ANP may be less prone to trigger counterbalancing responses and side-effects.
Resumo:
Atrial natriuretic peptides (ANP) are released into the circulation in response to enhanced atrial stretching. These peptides not only have diuretic and natriuretic properties, but also exert a relaxing effect on the vasculature. Moreover, they antagonize the contractions induced by norepinephrine and angiotensin II. Neuropeptide Y (NPY) is also a vasoactive peptide. It is widely distributed throughout the central and peripheral nervous systems. NPY is coreleased with norepinephrine by perivascular nerve endings. At high concentrations, this peptide has a direct vasoconstrictor effect. In addition, it enhances the vascular effect of various agonists, including norepinephrine and angiotensin II. Both ANP and NPY have an inhibitory effect on renin secretion. This effect may have important implications for the role of these peptides in cardiovascular regulation.
Resumo:
Synthetic atrial natriuretic peptide, containing 26 amino acids in the rat sequence, L-364, 343 (Ileu-ANP), was infused intravenously at increasing rates (1-40 micrograms/min) into four normal volunteers. Mean intraarterial blood pressure decreased and heart rate increased in cumulative-dose-dependent fashion. Skin blood flow as measured with a laser Doppler device rose already with a cumulative dose of 55 micrograms Ileu-ANP and further rises were directly related to dose. The only side effects observed were those accompanying symptomatic hypotension at higher doses. These findings provide strong evidence that Ileu-ANP acts as a vasodilator in normal volunteers.