981 resultados para RELATIVISTIC CORRECTIONS
Resumo:
Relativistic effects need to be considered in quantum-chemical calculations on systems including heavy elements or when aiming at high accuracy for molecules containing only lighter elements. In the latter case, consideration of relativistic effects via perturbation theory is an attractive option. Among the available techniques, Direct Perturbation Theory (DPT) in its lowest order (DPT2) has become a standard tool for the calculation of relativistic corrections to energies and properties.In this work, the DPT treatment is extended to the next order (DPT4). It is demonstrated that the DPT4 correction can be obtained as a second derivative of the energy with respect to the relativistic perturbation parameter. Accordingly, differentiation of a suitable Lagrangian, thereby taking into account all constraints on the wave function, provides analytic expressions for the fourth-order energy corrections. The latter have been implemented at the Hartree-Fock level and within second-order Møller-Plesset perturbaton theory using standard analytic second-derivative techniques into the CFOUR program package. For closed-shell systems, the DPT4 corrections consist of higher-order scalar-relativistic effects as well as spin-orbit corrections with the latter appearing here for the first time in the DPT series.Relativistic corrections are reported for energies as well as for first-order electrical properties and compared to results from rigorous four-component benchmark calculations in order to judge the accuracy and convergence of the DPT expansion for both the scalar-relativistic as well as the spin-orbit contributions. Additionally, the importance of relativistic effects to the bromine and iodine quadrupole-coupling tensors is investigated in a joint experimental and theoretical study concerning the rotational spectra of CH2BrF, CHBrF2, and CH2FI.
Resumo:
The equilibrium structure of acetylene (also named ethyne) has been reinvestigated to resolve the small discrepancies noted between different determinations. The size of the system as well as the large amount of available experimental data provides the quite unique opportunity to check the magnitude and relevance of various contributions to equilibrium structure as well as to verify the accuracy of experimental results. With respect to pure theoretical investigation, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, inclusion of core correlation effects as well as relativistic and diagonal Born-Oppenheimer corrections. In particular, it is found that the extrapolation to the complete basis set limit, the inclusion of higher excitations in the electronic-correlation treatment and the relativistic corrections are of the same order of magnitude. It also appears that a basis set as large as a core-valence quintuple-zeta set is required for accurately accounting for the inner-shell correlation contribution. From a pure experimental point of view, the equilibrium structure has been determined using very accurate rotational constants recently obtained by a global analysis (that is to say that all non-negligible interactions are explicitely included in the Hamiltonian matrix) of rovibrational spectra. Finally, a semi-experimental equilibrium structure (where the equilibrium rotational constants are obtained from the experimental ground state rotational constants and computed rovibrational corrections) has been obtained from the available experimental ground-state rotational constants for ten isotopic species corrected for computed vibrational corrections. Such a determination led to the revision of the ground-state rotational constants of two isotopologues, thus showing that structural determination is a good method to identify errors in experimental rotational constants. The three structures are found in a very good agreement, and our recommended values are rCC 120.2958(7) pm and rCH 106.164(1) pm. © 2011 American Institute of Physics.
Resumo:
Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.
Resumo:
Energies of the 700 lowest levels in Fe XX have been obtained using the multiconfiguration Dirac-Fock method. Configuration interaction method on the basis set of transformed radial orbitals with variable parameters taking into account relativistic corrections in the Breit-Pauli approximation was used to crosscheck our presented results. Transition probabilities, oscillator and line strengths are presented for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these levels. The total radiative transition probabilities from each level are also provided. Results are compared with data compiled by NIST and with other theoretical work.
Resumo:
Diatomic correlation diagrams are the main basis for the description of heavy-ion collisions. We have constructed the first realistic relativistic many-electron correlation diagrams based on nonrelativistic self-consistent-field, Hartree-Fock calculations of diatomic molecules plus relativistic corrections. We discuss the relativistic influences as well as the many-electron screening effects in the I-Au system with a combined charge of Z = 132 as an example.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In accelerating dark energy models, the estimates of the Hubble constant, Ho, from Sunyaev-Zerdovich effect (SZE) and X-ray surface brightness of galaxy clusters may depend on the matter content (Omega(M)), the curvature (Omega(K)) and the equation of state parameter GO. In this article, by using a sample of 25 angular diameter distances of galaxy clusters described by the elliptical beta model obtained through the SZE/X-ray technique, we constrain Ho in the framework of a general ACDM model (arbitrary curvature) and a flat XCDM model with a constant equation of state parameter omega = p(x)/rho(x). In order to avoid the use of priors in the cosmological parameters, we apply a joint analysis involving the baryon acoustic oscillations (BA()) and the (MB Shift Parameter signature. By taking into account the statistical and systematic errors of the SZE/X-ray technique we obtain for nonflat ACDM model H-0 = 74(-4.0)(+5.0) km s(-1) Mpc(-1) (1 sigma) whereas for a fiat universe with constant equation of state parameter we find H-0 = 72(-4.0)(+5.5) km s(-1) Mpc(-1)(1 sigma). By assuming that galaxy clusters are described by a spherical beta model these results change to H-0 = 6(-7.0)(+8.0) and H-0 = 59(-6.0)(+9.0) km s(-1) Mpc(-1)(1 sigma), respectively. The results from elliptical description are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates based on the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these three independent phenomena provides an interesting method to constrain the Bubble constant. As an extra bonus, the adoption of the elliptical description is revealed to be a quite realistic assumption. Finally, by comparing these results with a recent determination for a, flat ACDM model using only the SZE/X-ray technique and BAO, we see that the geometry has a very weak influence on H-0 estimates for this combination of data.
Resumo:
Context. The angular diameter distances toward galaxy clusters can be determined with measurements of Sunyaev-Zel'dovich effect and X-ray surface brightness combined with the validity of the distance-duality relation, D-L(z)(1 + z)(2)/D-A(z) = 1, where D-L(z) and D-A(z) are, respectively, the luminosity and angular diameter distances. This combination enables us to probe galaxy cluster physics or even to test the validity of the distance-duality relation itself. Aims. We explore these possibilities based on two different, but complementary approaches. Firstly, in order to constrain the possible galaxy cluster morphologies, the validity of the distance-duality relation (DD relation) is assumed in the Lambda CDM framework (WMAP7). Secondly, by adopting a cosmological-model-independent test, we directly confront the angular diameters from galaxy clusters with two supernovae Ia (SNe Ia) subsamples (carefully chosen to coincide with the cluster positions). The influence of the different SNe Ia light-curve fitters in the previous analysis are also discussed. Methods. We assumed that eta is a function of the redshift parametrized by two different relations: eta(z) = 1 +eta(0)z, and eta(z) = 1 + eta(0)z/(1 + z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we considered the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical and spherical isothermal beta models and spherical non-isothermal beta model. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. For both approaches we find that the elliptical beta model agrees with the distance-duality relation, whereas the non-isothermal spherical description is, in the best scenario, only marginally compatible. We find that the two-light curve fitters (SALT2 and MLCS2K2) present a statistically significant conflict, and a joint analysis involving the different approaches suggests that clusters are endowed with an elliptical geometry as previously assumed. Conclusions. The statistical analysis presented here provides new evidence that the true geometry of clusters is elliptical. In principle, it is remarkable that a local property such as the geometry of galaxy clusters might be constrained by a global argument like the one provided by the cosmological distance-duality relation.
Resumo:
Quantenchemische Untersuchungen von Atomen und Molekülen haben in den letzten Jahren durch die systematische Erweiterung der Methoden und Computerresourcen zunehmend für die Interpretation und Vorhersage experimenteller Ergebnisse an Bedeutung gewonnen. Relativistische Effekte in der Chemie werden zum Beispiel für die gelbe Farbe von Gold und den flüssigen Aggregatzustand von Quecksilber verantwortlich gemacht und müssen daher in quantenchemischen Rechnungen berücksichtigt werden. Relativistische Effekte sind bei leichten Elementen oft so klein, daß sie in vielen quantenchemischen Betrachtungen vernachlässigt werden. Dennoch sind es gerade diese Beiträge, die verbleibende Abweichungen von noch so genauen nichtrelativistischen Rechnungen von ebenso genauen experimentellen Ergebnissen ausmachen können. Relativistische Effekte können auf viele Arten in quantenchemischen Rechnungen berücksichtigt werden. Eine Möglichkeit ist die Störungstheorie. Ein derartiger Ansatz ist die Mass-velocity-Darwin-Näherung, ein anderer die Direkte Störungstheorie. Hier entspricht die relativistische Energiekorrektur erster Ordnung der ersten Ableitung der Energie nach einem relativistischen Störparameter. Für eine Bestimmung der Gleichgewichtsstruktur eines Moleküls müssen die Kräfte auf die Atomkerne bestimmt werden. Diese entsprechen einer ersten Ableitung der Gesamtenergie nach den Kernkoordinaten. Eine Einbeziehung der relativistischen Effekte auf diese Kräfte erfordert daher die gemischte zweite Ableitung der Energie nach dem relativistischen Störparameter und den Kernkoordinaten. Diese relativistischen Korrekturen wurden in dem quantenchemischen Programmpaket ACES2 implementiert. Ein Resultat dieser Arbeit ist, daß nun erstmalig eine Implementierung analytischer Gradienten für die Berechnung relativistischer Korrekturen zu Strukturparametern mit Hilfe der relativistischen Störungstheorie für den Coupled-Cluster-Ansatz bereit steht. Die Coupled-Cluster-Theorie eignet sich besonders gut für die hochgenaue Vorhersage von molekularen Eigenschaften, wie der Gleichgewichtsstruktur. Im Rahmen dieser Arbeit wurde die Basissatzabhängigkeit der relativistischen Beiträge zu Energien, Strukturparametern und harmonischen Schwingungsfrequenzen im Detail untersucht. Für die hier untersuchten Moleküle sind die relativistischen Effekte und Effekte aufgrund der Elektronenkorrelation nicht additiv, so verkürzt die Berücksichtigung relativistischer Effekte bei Hartree-Fock-Rechnungen die Bindung in den Hydrogenhalogeniden, während die Einbeziehung der Elektronenkorrelation durch CCSD(T)-Rechnungen zu einer verlängerten Bindung im Fluorwasserstoff und weniger stark ausgeprägten Korrekturen im Chlor- und Bromwasserstoff führt. Für die anderen hier untersuchten mehratomigen Moleküle findet sich kein einheitlicher Trend; dies unterstreicht die Notwendigkeit expliziter Rechnungen. Damit steht ein leistungsfähiges und vielseitiges Werkzeug für die Berechnung relativistischer Korrekturen auf verschiedenste molekulare Eigenschaften zur Verfügung, das mit modernen, systematisch verbesserbaren quantenchemischen Methoden verknüpft ist. Hiermit ist es möglich, hochgenaue Rechnungen zur Vorhersage und Interpretation von Experimenten durchzuführen.
Resumo:
PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high res- olution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM’s main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude bet- ter than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) e↵ect, detecting approximately 106 clusters extending to large redshift, including a char- acterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ e↵ect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the di↵use CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during inflation and from gravitational lensing, as well as the ultimate search for primordial non-Gaussianity using CMB polarization, which is less contaminated by foregrounds on small scales than thetemperature anisotropies; (4) a search for distortions from a perfect blackbody spectrum, which include some nearly certain signals and others that are more speculative but more informative; and (5) a study of the role of the magnetic field in star formation and its inter- action with other components of the interstellar medium of our Galaxy. These are but a few of the highlights presented here along with a description of the proposed instrument.
Resumo:
The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated. The internal gravitational field is produced by the mass of the atomic nucleus. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, and 4P levels with Schwarzschild metric. The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.
Resumo:
In contradiction to the prediction of the Periodic Table but in agreement with earlier suggestions by Brewer and Mann, the ground state configuration of atomic Lawrencium (Z = 103) will not be 7s^2 6d^2 D_3/2 but 7s^2 7p ^2p_1/2. The reason for this deviation from normal trends across the Periodic Table are strong relativistic effects on the outermost 7P_l/2 orbital. Multicontiguration Dirac-Fock calculations are reported for Lawrencium and analogous lighter atoms. These calculations include contributions from magnetic and retardation interactions and an estimation of quantum electrodynamic corrections.
Resumo:
The classical scattering cross section of two colliding nuclei at intermediate and relativistic energies is reevaluated. The influence of retardation and magnetic field effects is taken into account. Corrections due to electron screening as well as due to attractive nuclear forces are discussed. This paper represents an addendum to [l].
Resumo:
We present the complete next-to-leading order QCD corrections to the polarized hadroproduction of heavy flavors which soon will be studied experimentally in polarized pp collisions at the BNL Relativistic Heavy Ion Collider (RHIC) in order to constrain the polarized gluon density Δg. It is demonstrated that the dependence on unphysical renormalization and factorization scales is strongly reduced beyond the leading order. The sensitivity of the charm quark spin asymmetry to Δg is analyzed in some detail, including the limited detector acceptance for leptons from charm quark decays at the BNL RHIC.
Resumo:
We calculate the spectra of produced thermal photons in Au + Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by divergence-type 2 + 1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of eta/s from measured photon spectra. The uncertainty in the value of eta/s associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data. (C) 2010 Elsevier B.V. All rights reserved.