917 resultados para Positional number systems
Resumo:
Minkowski's ?(x) function can be seen as the confrontation of two number systems: regular continued fractions and the alternated dyadic system. This way of looking at it permits us to prove that its derivative, as it also happens for many other non-decreasing singular functions from [0,1] to [0,1], when it exists can only attain two values: zero and infinity. It is also proved that if the average of the partial quotients in the continued fraction expansion of x is greater than k* =5.31972, and ?'(x) exists then ?'(x)=0. In the same way, if the same average is less than k**=2 log2(F), where F is the golden ratio, then ?'(x)=infinity. Finally some results are presented concerning metric properties of continued fraction and alternated dyadic expansions.
Resumo:
This paper studies several topics related with the concept of “fractional” that are not directly related with Fractional Calculus, but can help the reader in pursuit new research directions. We introduce the concept of non-integer positional number systems, fractional sums, fractional powers of a square matrix, tolerant computing and FracSets, negative probabilities, fractional delay discrete-time linear systems, and fractional Fourier transform.
Resumo:
This paper studies several topics related with the concept of “fractional” that are not directly related with Fractional Calculus, but can help the reader in pursuit new research directions. We introduce the concept of non-integer positional number systems, fractional sums, fractional powers of a square matrix, tolerant computing and FracSets, negative probabilities, fractional delay discrete-time linear systems, and fractional Fourier transform.
Resumo:
This paper aims to describe the construction and validation of a notebook of activities whose content is a didactic sequence that makes use of the study of ancient numbering systems as compared to the object of our decimal positional numbering system Arabic. This is on the assumption that the comparison with a system different from our own might provide a better understanding of our own numbering system, but also help in the process of arithmetic operations of addition, subtraction and multiplication, since it will force us to think in ways that are not routinely object of our attention. The systems covered in the study were the Egyptian hieroglyphic system of numbering, the numbering system Greek alphabet and Roman numbering system, always compared to our numbering system. The following teachung is presented structured in the form of our activities, so-called exercise set and common tasks around a former same numbering system. In its final stage of preparation, the sequence with the participation of 26 primary school teachers of basic education
Resumo:
Let epsilon be a commutative ring with identity and P is an element of epsilon[x] be a polynomial. In the present paper we consider digit representations in the residue class ring epsilon[x]/(P). In particular, we are interested in the question whether each A is an element of epsilon[x]/(P) can be represented modulo P in the form e(0)+ e(1)x + ... + e(h)x(h), where the e(i) is an element of epsilon[x]/(P) are taken from a fixed finite set of digits. This general concept generalizes both canonical number systems and digit systems over finite fields. Due to the fact that we do not assume that 0 is an element of the digit set and that P need not be monic, several new phenomena occur in this context.
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
In this brief, a read-only-memoryless structure for binary-to-residue number system (RNS) conversion modulo {2(n) +/- k} is proposed. This structure is based only on adders and constant multipliers. This brief is motivated by the existing {2(n) +/- k} binary-to-RNS converters, which are particular inefficient for larger values of n. The experimental results obtained for 4n and 8n bits of dynamic range suggest that the proposed conversion structures are able to significantly improve the forward conversion efficiency, with an AT metric improvement above 100%, regarding the related state of the art. Delay improvements of 2.17 times with only 5% area increase can be achieved if a proper selection of the {2(n) +/- k} moduli is performed.
Resumo:
In-network storage of data in wireless sensor networks contributes to reduce the communications inside the network and to favor data aggregation. In this paper, we consider the use of n out of m codes and data dispersal in combination to in-network storage. In particular, we provide an abstract model of in-network storage to show how n out of m codes can be used, and we discuss how this can be achieved in five cases of study. We also define a model aimed at evaluating the probability of correct data encoding and decoding, we exploit this model and simulations to show how, in the cases of study, the parameters of the n out of m codes and the network should be configured in order to achieve correct data coding and decoding with high probability.
Resumo:
Notre contexte pratique — nous enseignons à des élèves doués de cinquième année suivant le programme international — a grandement influencé la présente recherche. En effet, le Programme primaire international (Organisation du Baccalauréat International, 2007) propose un enseignement par thèmes transdisciplinaires, dont un s’intitulant Où nous nous situons dans l’espace et le temps. Aussi, nos élèves sont tenus de suivre le Programme de formation de l’école québécoise (MÉLS Ministère de l'Éducation du Loisir et du Sport, 2001) avec le développement, notamment, de la compétence Résoudre une situation-problème et l’introduction d’une nouveauté : les repères culturels. Après une revue de la littérature, l’histoire des mathématiques nous semble tout indiquée. Toutefois, il existe peu de ressources pédagogiques pour les enseignants du primaire. Nous proposons donc d’en créer, nous appuyant sur l’approche constructiviste, approche prônée par nos deux programmes d’études (OBI et MÉLS). Nous relevons donc les avantages à intégrer l’histoire des mathématiques pour les élèves (intérêt et motivation accrus, changement dans leur façon de percevoir les mathématiques et amélioration de leurs apprentissages et de leur compréhension des mathématiques). Nous soulignons également les difficultés à introduire une approche historique à l’enseignement des mathématiques et proposons diverses façons de le faire. Puis, les concepts mathématiques à l’étude, à savoir l’arithmétique, et la numération, sont définis et nous voyons leur importance dans le programme de mathématiques du primaire. Nous décrivons ensuite les six systèmes de numération retenus (sumérien, égyptien, babylonien, chinois, romain et maya) ainsi que notre système actuel : le système indo-arabe. Enfin, nous abordons les difficultés que certaines pratiques des enseignants ou des manuels scolaires posent aux élèves en numération. Nous situons ensuite notre étude au sein de la recherche en sciences de l’éducation en nous attardant à la recherche appliquée ou dite pédagogique et plus particulièrement aux apports des recherches menées par des praticiens (un rapprochement entre la recherche et la pratique, une amélioration de l’enseignement et/ou de l’apprentissage, une réflexion de l’intérieur sur la pratique enseignante et une meilleure connaissance du milieu). Aussi, nous exposons les risques de biais qu’il est possible de rencontrer dans une recherche pédagogique, et ce, pour mieux les éviter. Nous enchaînons avec une description de nos outils de collecte de données et rappelons les exigences de la rigueur scientifique. Ce n’est qu’ensuite que nous décrivons notre séquence d’enseignement/apprentissage en détaillant chacune des activités. Ces activités consistent notamment à découvrir comment différents systèmes de numération fonctionnent (à l’aide de feuilles de travail et de notations anciennes), puis comment ces mêmes peuples effectuaient leurs additions et leurs soustractions et finalement, comment ils effectuaient les multiplications et les divisions. Enfin, nous analysons nos données à partir de notre journal de bord quotidien bonifié par les enregistrements vidéo, les affiches des élèves, les réponses aux tests de compréhension et au questionnaire d’appréciation. Notre étude nous amène à conclure à la pertinence de cette séquence pour notre milieu : l’intérêt et la motivation suscités, la perception des mathématiques et les apprentissages réalisés. Nous revenons également sur le constructivisme et une dimension non prévue : le développement de la communication mathématique.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
In sport there is a great need to obtain as much information as possible about the factors which affect the dynamics of play. This study uses sequential analysis and temporal patterns (T-patterns)to examine the evolution of defence (against an equal number of attackers)as used by the Spanish handball team at the Beijing 2008 Olympic Games. The aim is to help handball coaches (during their training and gathering of professional experience)to understand the importance of the structure of defensive systems. This can be achieved through observational processes that reveal the evolution and adaptation of these defensive systems according to different variables: the match score, the response of the opposing team and progress through the tournament.
Resumo:
Gait analysis methods to estimate spatiotemporal measures, based on two, three or four gyroscopes attached on lower limbs have been discussed in the literature. The most common approach to reduce the number of sensing units is to simplify the underlying biomechanical gait model. In this study, we propose a novel method based on prediction of movements of thighs from movements of shanks. Datasets from three previous studies were used. Data from the first study (ten healthy subjects and ten with Parkinson's disease) were used to develop and calibrate a system with only two gyroscopes attached on shanks. Data from two other studies (36 subjects with hip replacement, seven subjects with coxarthrosis, and eight control subjects) were used for comparison with the other methods and for assessment of error compared to a motion capture system. Results show that the error of estimation of stride length compared to motion capture with the system with four gyroscopes and our new method based on two gyroscopes was close ( -0.8 ±6.6 versus 3.8 ±6.6 cm). An alternative with three sensing units did not show better results (error: -0.2 ±8.4 cm). Finally, a fourth that also used two units but with a simpler gait model had the highest bias compared to the reference (error: -25.6 ±7.6 cm). We concluded that it is feasible to estimate movements of thighs from movements of shanks to reduce number of needed sensing units from 4 to 2 in context of ambulatory gait analysis.
Resumo:
The Lieb-Oxford bound is a constraint upon approximate exchange-correlation functionals. We explore a nonempirical tightening of that bound in both universal and electron number-dependent form. The test functional is PBE. Regarding both atomization energies (slightly worsened) and bond lengths (slightly improved), we find the PBE functional to be remarkably insensitive to the value of the Lieb-Oxford bound. This both rationalizes the use of the original Lieb-Oxford constant in PBE and suggests that enhancement factors more sensitive to sharpened constraints await discovery.