339 resultados para Polylogarithmen, motivische Kohomologie, höhere Chowgruppen


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For an infinite field F, we study the integral relationship between the Bloch group B_2(F) and the higher Chow group CH^2(F,3) by proving some relations corresponding to the functional equations of the dilogarithm. As a second result, the groups involved in Suslin’s exact sequence 0 → Tor^1(F^× ,F^×)∼ → CH^2(F,3) → B_2(F) → 0 are identified with homology groups of the cycle complex Z^2(F,•) computing Bloch’s higher Chow groups. Using these results, we give explicit cycles in motivic cohomology generating the integral motivic cohomology groups of some specific number fields and determine whether a given cycle in the Chow group already lives in one of the other groups of Suslin’s sequence. In principle, this enables us to find a presentation of the codimension two Chow group of an arbitrary number field. Finally, we also prove some relations in the higher Chow groups of codimension three modulo 2-torsion coming from relations in the higher Bloch group B_3(F) modulo 2-torsion. Further, we can prove a series of relations in CH^ 3(Q(zeta_p),5) for a primitive pth root of unity zeta_p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Ziel dieser Arbeit ist die Konstruktion eines Homomorphismus von partiell definierten, graduiert-kommutativen Algebren, der nach Ubergang zu rationalen Kohomologiegruppen mit der Regulatorabbildung reg zwischen motivischer und Deligne-Beilinson Kohomologie übereinstimmt.rnZu Beginn der Arbeit werden verschiedene Komplexe beschrieben, mit denen sich die motivische und die Deligne-Beilinson Kohomologie berechnen lassen.rnIm ersten Kapitel wird der Komplex der höheren Chow Ketten und der Unterkomplex der "alternierenden" Ketten "in guter Lage" eingeführt, die beide die motivische Kohomologie berechnen (letzterer mit rationalen Koeffizienten).rnIn den folgenden beiden Kapiteln werden Komplexe C_D und P_D beschrieben, mit denen sich die (rationale) Deligne-Beilinson Kohomologie berechnen lässt. Diese sind aufgebaut aus sogenannten Strömen, die im zweiten Kapitel eingeführt werden. Verknüpft sind die beiden Komplexe durch eine Auswertungsabbildung ev, die für rationale Koeffizienten zu einem Quasi-Isomorphismus wird. Auf beiden Komplexen lassen sich (Schnitt-)Produkte definieren, von denen jedoch nur das Produkt auf P_D gleichzeitig assoziativ und graduiert-kommutativ ist.rnIm vierten Kapitel wird ganz allgemein für eine Familie von Komplexen, die einer Reihe an Anforderungen genügt, ein (partiell definierter) Homomorphismus (der Regulator) von dem Komplex der höheren Chow Ketten in eben diese Komplexe konstruiert. Die beiden oben genannten Komplexe erfüllen diese Anforderungen und liefern daher Regulatoren reg_C und reg_P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Berechnung von experimentell überprüfbaren Vorhersagen aus dem Standardmodell mit Hilfe störungstheoretischer Methoden ist schwierig. Die Herausforderungen liegen in der Berechnung immer komplizierterer Feynman-Integrale und dem zunehmenden Umfang der Rechnungen für Streuprozesse mit vielen Teilchen. Neue mathematische Methoden müssen daher entwickelt und die zunehmende Komplexität durch eine Automatisierung der Berechnungen gezähmt werden. In Kapitel 2 wird eine kurze Einführung in diese Thematik gegeben. Die nachfolgenden Kapitel sind dann einzelnen Beiträgen zur Lösung dieser Probleme gewidmet. In Kapitel 3 stellen wir ein Projekt vor, das für die Analysen der LHC-Daten wichtig sein wird. Ziel des Projekts ist die Berechnung von Einschleifen-Korrekturen zu Prozessen mit vielen Teilchen im Endzustand. Das numerische Verfahren wird dargestellt und erklärt. Es verwendet Helizitätsspinoren und darauf aufbauend eine neue Tensorreduktionsmethode, die Probleme mit inversen Gram-Determinanten weitgehend vermeidet. Es wurde ein Computerprogramm entwickelt, das die Berechnungen automatisiert ausführen kann. Die Implementierung wird beschrieben und Details über die Optimierung und Verifizierung präsentiert. Mit analytischen Methoden beschäftigt sich das vierte Kapitel. Darin wird das xloopsnosp-Projekt vorgestellt, das verschiedene Feynman-Integrale mit beliebigen Massen und Impulskonfigurationen analytisch berechnen kann. Die wesentlichen mathematischen Methoden, die xloops zur Lösung der Integrale verwendet, werden erklärt. Zwei Ideen für neue Berechnungsverfahren werden präsentiert, die sich mit diesen Methoden realisieren lassen. Das ist zum einen die einheitliche Berechnung von Einschleifen-N-Punkt-Integralen, und zum anderen die automatisierte Reihenentwicklung von Integrallösungen in höhere Potenzen des dimensionalen Regularisierungsparameters $epsilon$. Zum letzteren Verfahren werden erste Ergebnisse vorgestellt. Die Nützlichkeit der automatisierten Reihenentwicklung aus Kapitel 4 hängt von der numerischen Auswertbarkeit der Entwicklungskoeffizienten ab. Die Koeffizienten sind im allgemeinen Multiple Polylogarithmen. In Kapitel 5 wird ein Verfahren für deren numerische Auswertung vorgestellt. Dieses neue Verfahren für Multiple Polylogarithmen wurde zusammen mit bekannten Verfahren für andere Polylogarithmus-Funktionen als Bestandteil der CC-Bibliothek ginac implementiert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ist $f: X \to S$ eine glatte Familie von Calabi-Yau-Mannigfaltigkeiten der Dimension $m$ über einer quasiprojektiven Kurve, so trägt nach einem Resultat von Zucker die erste $L^2$-Kohomologiegruppe $H^1_{(2)}(S, R^m f_* \mathbb{C}_X)$ eine reine Hodgestruktur vom Gewicht $m+1$. In dieser Arbeit berechnen wir die Hodgezahlen solcher Hodgestrukturen für $m= 1, 2, 3$ und verallgemeinern dabei Formeln aus einem Artikel von del Angel, Müller-Stach, van Straten und Zuo auf den Fall, in dem die lokalen Monodromiematrizen bei Unendlich nicht unipotent, sondern echt quasi-unipotent sind. Wir verwenden dazu den $L^2$-Higgs-Komplex nach Jost, Yang und Zuo. Für Familien von Kurven führt dies auf eine bereits bekannte Formel von Cox und Zucker. Schließlich wenden wir die Ergebnisse im Fall $m=3$ auf 14 Familien von Calabi-Yau-Mannigfaltigkeiten an, die eine Rolle in der Spiegelsymmetrie spielen, sowie auf eine von Rohde konstruierte Familie ohne Punkte mit maximal unipotenter Monodromie.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

bearb. von Theodor Kroner