954 resultados para Peneira molecular mesoporosa Al-MCM-41
Resumo:
Mesoporous molecular sieves of MCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work, mesoporous molecular sieves MCM-41 were modified with different rare earth ions (La, Eu e Yb) for the obtaining nanostrutured materials with catalytic properties. The catalysts were synthesized by the hydrothermal method at 100oC for 120 h, presenting, all the samples, in the gel of synthesis molar ratio Si/Ln = 50. The obtained materials after calcination at 500oC for 2 h were characterized by XRD, surface area BET, TG/DTG, FTIR, and hydrothermal stability at 700ºC. The XRD analysis of the catalysts indicated that the materials containing rare earth presented characteristic hexagonal structure of the mesoporous materials of the type MCM-41. The TG curves showed that the decomposition of the structural template occurs in the materials at temperatures lower than 500oC. The samples presented variations as the specific superficial area, average diameter of pores and thickness of the silica wall, as a function of the nature of the rare earth impregnated in the mesoporous material. Hydrotermal stability was evaluated through the exposition of the materials to water vapour at 700°C. The thiophene adsorptions reach a maximum at 80% of conversion and incorporation of the rare earths showed influence in the process. Adsorption capacity followed the sequence: Yb-MCM-41 < La-MCM-41 < Eu-MCM-41 < MCM-41
Resumo:
The present work reports the study of nanoporous structures, aiming at their use in research directed to the current demand of the petroleum industry to value heavy oil. Initially, two ways were chosen for the synthesis of porous structures from the molecular sieves of type Si-MCM-41. In the first way, the structure MCM-41 is precursory for heteroatom substitutes of silicon, generating catalyst of the type Al-MCM-41 from two different methods of incorporation of the metal. This variation of the incorporation method of Aluminum in the structure of Si-MCM-41 was carried out through the conventional procedure, where the aluminum source was incorporated to the gel of synthesis, and the procedure post-synthesis, where the Aluminum source was incorporated in catalyst after the synthesis of Si-MCM-41. In the second way, the MCM-41 acts as a support for growth of nanocrystals of zeolite embedded in their mesoporous, resulting in hybrid MCM-41/ZSM-5 catalyst. A comparative analysis was carried through characterizations by XRD, FTIR, measures of acidity through n-butylamine adsorption for TGA, SEM-XRF and N2 adsorption. Also crystalline aluminosilicate with zeolitic structure MFI of type ZSM-5 was synthesized without using organic templates. Methodologies to the preparation of these materials are related by literature using conventionally reactants that supply oxides of necessary silicon and aluminum, as well as a template agent, and in some cases co-template. The search for new routes of preparation for the ZSM-5 aimed at, above all, the optimization of the same as for the time and the temperature of synthesis, and mainly the elimination of the use of organic templates, that are material of high cost and generally very toxic. The current study is based on the use of the H2O and Na+ cations playing the role of structural template and charge compensation in the structure. Characterizations by XRD, FTIR, SEM-XRF and N2 adsorption were also conducted for this material in order to compare the samples of ZSM-5 synthesized in the absence of template and those used industrially and synthesized using structuring
Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41
Resumo:
Biodiesel has been obtained by esterification of palmitic acid with methanol, ethanol and isopropanol in the presence of Al-MCM-41 mesoporous molecular sieves with Si/Al ratios of 8.16 and 32. The catalytic acids were synthesized at room temperature and characterized by atomic absorption spectrometry (AAS), thermal analysis (TG/DTA), X-ray diffraction (XRD), nitrogen absorption (BET/BJH), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The reaction was carried out at 130 degrees C whilst stirring at 500 rpm, with an alcohol/acid molar ratio of 60 and 0.6 wt% catalyst for 2 h. The alcohol reactivity follows the order methanol > ethanol > isopropanol. The catalyst Al-MCM-41 with ratio Si/Al = 8 produced the largest conversion values for the alcohols studied. The data followed a rather satisfactory approximation to first-order kinetics. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Superior enantioselectivity in the dihydroxylation of trans-stilbene catalysed by anchored triosmium carbonyl species without using a chiral modifier is observed inside sterically congested MCM-41 channels; this effect is more pronounced through the introduction of surface Al sites into the silicate.
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41
Resumo:
The effect of two zeolites, HUSY, NaY and a mesoporous synthesized Al-MCM-41 material on the smoke composition of ten commercial cigarettes brands has been studied. Cigarettes were prepared by mixing the tobacco with the three powdered materials, and the smoke obtained under the ISO conditions was analyzed. Up to 32 compounds were identified and quantified in the gas fraction and 80 in the total particulate matter (TPM) condensed in the cigarettes filters and in the traps located after the mouth end of the cigarettes. Al-MCM-41 is by far the best additive, providing the highest reductions of the yield for most compounds and brands analyzed. A positive correlation was observed among the TPM and nicotine yields with the reduction obtained in nicotine, CO, and most compounds with the three additives. The amount of ashes in additive free basis increases due to the coke deposited on the solids, especially with Al-MCM-41. Nicotine is reduced with Al-MCM-41 by an average of 34.4% for the brands studied (49.5% for the brand where the major reduction was obtained and 18.5 for the brand behaving the worst). CO is reduced by an average of 18.6% (ranging from 10.3 to 35.2% in the different brands).
Resumo:
This work describes the synthesis and aplication of homogeneous and heterogenized iron catalysts in the alkylation reaction of toluene with propene, empolying experimental design. The homogenous complex was obtained trough the synthesis of the organic ligand folowed by the complexation of the iron(II) chloride. As to the heterogenized complexes, first were synthetized the inorganic supports (SBA-15, MCM-41 and Al-MCM-41). Then, it was synthetized the ligand again, that through funcionalization with chloropropyltrimethoxysilane (CPTMS), was anchored on the support previously calcinated. To these anchored ligands, was complexed the iron(II) chloride, previously solubilizated in tetrahydrofuran (THF). The organic ligand characterization was accomplished trough nuclear magnetic resonance (NMR) and Infrared spectroscopy (IV). The supports were characterized with x-ray diffraction (DRX), texture analysis with nitrogen adsorption/desorption (before and after the anchoring), termogravimetric analysis (TG) and infrared (IV). The metalic content was quantified trough the atomic absorption spectrophotometry (AAS). The complexes were tested in catalytic reactions emolying ethylaluminium sesquichloride (EASC) as co-catalyst in steel reactor, under mecanic stirring. The reaction conditions ranged from 4 to 36 ◦C, with many aluminum/iron ratios. The catalysts were actives in homogeneous and heterogenized ways. The homogenous catalytic complex showed a maximum turnover frequency (TOF) of 8.63 ×103 · h −1 , while, in some conditions, the anchored complexes showed better results, with TOF of until 8.08 ×103 · h −1 . Aditionally, it was possible to determine an equation, to the homogenous catalyst, that describes the product quantity in function of reacional temperature and aluminum/iron ratio.
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
Emissions of CO2 in the atmosphere have increased successively by various mechanisms caused by human action, especially as fossil fuel combustion and industrial chemical processes. This leads to the increase in average temperature in the atmosphere, which we call global warming. The search for new technologies to minimize environmental impacts arising from this phenomenon has been investigated. The capture of CO2 is one of the alternatives that can help reduce emis ions of greenhouse gases. The CO2 can be captured through the process of selective adsorption using adsorbents for this purpose. Were synthesized by hydrothermal method, materials of the type MCM-41 and Al-MCM-41 in the molar ratio Si / Al equal to 50. The synthesis of gels were prepared from a source of silicon, sodium, water and aluminum in the case of Al-MCM-41. The period of synthesis of the materials was 5 days in autoclave at 100°C. After that time materials were filtered, washed and dried in greenhouse at 100 º C for 4 hours and then calcined at 450 º C. Then the calcined material was functionalized with the Di-isopropylamine (DIPA) by the method of wet impregnation. We used 0.5 g of material mesopores to 3.5 mL of DIPA. The materials were functionalized in a closed container for 24 hours, and after this period were dried at brackground temperature for 2 hours. Were subsequently subjected to heat treatment at 250°C for 1 hour. These materials were used for the adsorption of CO2 and were characterized by XRD, FT-IR, BET / BJH, SEM, EDX and TG / DTG. Tests of adsorption of CO2 was carried out under the following conditions: 100 mg of adsorbent, temperature of 75°C under flow of 100 mL/min of CO2 for 2 hours. The desorption of CO2 was carried out by thermogravimetry from ambient temperature to 900ºC under flow of 25 mL min of He and a ratio of 10ºC/min. The difratogramas X-ray for the synthesized samples showed the characteristic peaks of MCM-41, showing that the structure of it was obtained. For samples functionalized there was a decrease of the intensities of these peaks, with a consequent reduction in the structural ordering of the material. However, the structure was preserved mesopores. The adsorption tests showed that the functionalized MCM-41 is presented as a material promising adsorbent, for CO2 capture, with a loss of mass on the desorption CO2 of 7,52%, while that in Al-MCM- 41 functionalized showed no such loss
Resumo:
The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.
Resumo:
The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.
Resumo:
MCM-41分子筛是最近美国Mobil公司开发出的一种新材料,其孔径范围在2.0~25nm之间,具有较大的Si/Al比和大的比表面积及孔隙率,孔道大小均匀.其对弱极性的环状及芳族化合物具有较大的吸附能力.自这种新型分子筛合成以来,才开始应用于石油炼制及烯烃裂解,歧化的研究.至今还没有关于将MCM-41作为载体,用于负载金属配合物催化剂的报道.本文利用自己合成的MCM-41分子筛作为载体,制成了负载铁的1,10-菲咯啉配合物催化剂(简记FePhen/MCM-41),并将其应用于苯酚的羟化反应,发现其对苯酚的羟化反应具有较好的催化性能.1 实验部分1.1 FePhen/MCM-41的制备将参考文献[3]制得的MCM-41分子筛,取5g放入200mL0.05mol/L的[Fe(Phen)_3]Cl_2乙醇溶液中,室温搅拌24h,抽滤,所得固体用乙醇洗涤3次,以除去MCM-41分子筛表面和孔道内结合不牢的金属配合物.利用原子吸收光谱分析仪,测得负载催化体系中铁元素的含量为0.65%.1.2 MCM-41分子筛及FePhen/MCM-41的表征
Resumo:
The mesoporous molecular sieves of MCM-41 and AlMCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work the molecular sieves MCM-41 and AlMCM-41 were synthesized by replacing the source of silica conventionally used, for quartz, an alternative and abundant, and the use of waste from the production of diatomaceous earth, an aluminum-silicate, as a source aluminum, due to abundant reserves of diatomaceous earth in the state of Rio Grande do Norte in the city of Ceará-Mirim, with the objective of producing high-value materials that have similar characteristics to traditional commercial catalysts in the market. These materials were synthesized by the method of hydrothermal synthesis at 100 º C for 7 days and subjected to calcination at 500 º C for 2 hours under flow of nitrogen and air. The molecular sieves were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and thermogravimetric analysis (TG), adsorption of N2 (BET and BJH methods), spectroscopy in the infra red (FTIR), microscopy scanning electron (SEM) and transmission electron microscopy (TEM). The analysis indicated that the synthesized materials showed characteristic hexagonal structure of mesopores materials with high specific surface area and sort and narrow distribution of size of pores
Resumo:
In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to become very promising for the use as a catalyst in the refining of oil in the catalytic cracking process, since the mesopores facilitate the access of large hydrocarbon molecules, thereby increasing the production of light products, that are in high demand in the market. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more beneficial for application in the petrochemical industry. The mesoporous materials MCM-41 and Al-MCM-41 (ratio Si / Al = 50) were synthesized through the hydrothermal method, starting with silica gel, NaOH and distilled water. CTMABr was used as template, for structural guiding. In Al-MCM-41 the same reactants were used, with the adding of pseudoboehmite (as a source of aluminum) in the synthesis gel. The syntheses were carried out over a period of four days with a daily adjustment of pH. The optimum conditions of calcination for the removal of the organic template (CTMABr) were discovered through TG / DTG and also through analysis by XRD, FTIR and Nitrogen Adsorption. It was found that both the method of hydrothermal synthesis and calcination conditions of the studies based on TG were promising for the production of mesoporous materials with a high degree of hexagonal array. The acidic properties of the materials were determined by desorption of n-butylamine via thermogravimetry. One proved that the addition of aluminum in the structure of MCM-41 promoted an increase in the acidity of the catalyst. To check the catalytic activity of these materials, a sample of Atmospheric Residue (RAT) that is derived from atmospheric distillation of oil from the Pole of Guamaré- RN was used. This sample was previously characterized by various techniques such as Thermogravimetry, FTIR and XRF, where through thermal analysis of a comparative study between the thermal degradation of the RAT, the RAT pyrolysis + MCM-41 and RAT + Al- MCM-41. It was found that the Al-MCM-41 was most satisfactory in the promotion of a catalytic effect on the pyrolysis of the RAT, as the cracking of heavy products in the waste occurred at temperatures lower than those observed for the pyrolysis with MCM-41, and thereby also decreasing the energy of activation for the process and increasing the rates of conversion of residue into lighter products