997 resultados para PERPENDICULAR MAGNETIC-ANISOTROPY
Resumo:
We find that the use of V(100) buffer layers on MgO(001) substrates for the epitaxy of FePd binary alloys yields to the formation at intermediate and high deposition temperatures of a FePd¿FeV mixed phase due to strong V diffusion accompanied by a loss of layer continuity and strong increase of its mosaic spread. Contrary to what is usually found in this kind of systems, these mixed phase structures exhibit perpendicular magnetic anisotropy (PMA) which is not correlated with the presence of chemical order, almost totally absent in all the fabricated structures, even at deposition temperatures where it is usually obtained with other buffer layers. Thus the observed PMA can be ascribed to the V interdiffusion and the formation of a FeV alloy, being the global sample saturation magnetization also reduced.
Resumo:
Calculations are reported of the magnetic anisotropy energy of two-dimensional (2D) Co nanostructures on a Pt(111) substrate. The perpendicular magnetic anisotropy (PMA) of the 2D Co clusters strongly depends on their size and shape, and rapidly decreases with increasing cluster size. The PMA calculated is in reasonable agreement with experimental results. The sensitivity of the results to the Co-Pt spacing at the interface is also investigated and, in particular, for a complete Co monolayer we note that the value of the spacing at the interface determines whether PMA or in-plane anisotropy occurs. We find that the PMA can be greatly enhanced by the addition of Pt adatoms to the top surface of the 2D Co clusters. A single Pt atom can induce in excess of 5 meV to the anisotropy energy of a cluster. In the absence of the Pt adatoms the PMA of the Co clusters falls below 1 meV/Co atom for clusters of about 10 atoms whereas, with Pt atoms added to the surface of the clusters, a PMA of 1 meV/Co atom can be maintained for clusters as large as about 40 atoms. The effect of placing Os atoms on the top of the Co clusters is also considered. The addition of 5d atoms and clusters on the top of ferromagnetic nanoparticles may provide an approach to tune the magnetic anisotropy and moment separately.
Resumo:
We report the magnetic anisotropy and domain configuration of cosputtered TbFeGa alloys. The layers were deposited from two targets with compositions TbFe2 and Fe3Ga, respectively. The structural and magnetic properties do not only depend on the composition but also on the growth conditions. Alloys with the same composition but deposited using a DC or a pulsed power source in the TbFe2 target exhibit a different magnetic anisotropy. The perpendicular magnetic anisotropy, the size and topology of domain patterns can be tailored by changing the evaporation parameters of TbFe2. The width of the stripe domain increases from 235 to 835 nm when using the DC source in the TbFe2. We correlate this effect with Tb enrichment of the TbxFe1−x phases present in the samples.
Resumo:
In this study, the formation of stripe domains in permalloy (NisoFe20) thin films was investigated mainly utilizing magnetic force microscopy. Stripe domains are a known phenomenon, which reduces the "softness" of magnetic material and introduces a significant source of noise when used in perpendicular magnetic media. For the particular setup mentioned in this report, a critical thickness for stripe domains initiation depended on the sputtering rate, the substrate temperature, and the film thickness. Beyond the stripe domain formation, an increase in the periodicity of highly ordered stripe domains was evident with increasing film thickness. Above a particular thickness, stripe domains periodicity decreased along with magnetic domain randomization. The results led to the inference that the perpendicular anisotropy responsible for the formation of stripe domains originated mainly from magnetostriction.
Resumo:
Nanocrystalline Fe–Ni thin films were prepared by partial crystallization of vapour deposited amorphous precursors. The microstructure was controlled by annealing the films at different temperatures. X-ray diffraction, transmission electron microscopy and energy dispersive x-ray spectroscopy investigations showed that the nanocrystalline phase was that of Fe–Ni. Grain growth was observed with an increase in the annealing temperature. X-ray photoelectron spectroscopy observations showed the presence of a native oxide layer on the surface of the films. Scanning tunnelling microscopy investigations support the biphasic nature of the nanocrystalline microstructure that consists of a crystalline phase along with an amorphous phase. Magnetic studies using a vibrating sample magnetometer show that coercivity has a strong dependence on grain size. This is attributed to the random magnetic anisotropy characteristic of the system. The observed coercivity dependence on the grain size is explained using a modified random anisotropy model
Resumo:
The influence of different M(2+) cations on the effective magnetic anisotropy of systems composed of MFe(2)O(4) (M Fe, Co and Mn) nanoparticles was investigated. Samples were prepared by the high-temperature (538 K) solution phase reaction of Fe (acac) 3, Co (acac) 2 and Mn (acac) 2 with 1,2 octanodiol in the presence of oleic acid and oleylamine. The final particles are coated by an organic layer of oleic acid that prevents agglomeration. Transmission electron microscopy (TEM) images show that particles present near spherical form and a narrow grain size distribution, with mean diameters in the range of 4.5 - 7.6 nm. Powder samples were analyzed by ac susceptibility and Mossbauer measurements, and K(eff) for all samples was evaluated using both techniques, showing a strong dependence on the nature of the divalent cation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In dieser Arbeit untersuchen wir mittels zeitaufgelöster Abbildungen die Gigahertz-Dynamik von magnetischen Skyrmionen, um die Bewegungsgleichungen für diese Quasiteilchen zu bestimmen. Um dieses Ziel zu erreichen haben wir zunächst ein CoB/Pt Schichtsystem entwickelt, das starke senkrechte magnetische Anisotropie mit einer besonders geringen Rauigkeit der Energielandschaft verbindet. Diese Eigenschaften sind für das repetitive dynamische Abbildungsverfahren unerlässlich. In einem zweiten Schritt haben wir das Probendesign optimiert und so weiterentwickelt, dass eine Beobachtung der Skyrmionenbewegung mit einer Auflösung von besser als 3 nm möglich wurde. Aufgrund dieser Verbesserungen ist es uns gelungen, die Trajektorie eines Skyrmionen aufzuzeichnen. Diese Bewegung ist eine Superposition von zwei Drehbewegungen, einer im Uhrzeigersinn und einer gegen läufigen. Aus der Existenz dieser zwei Moden lässt sich schließen, dass Skyrmionen träge Quasiteilchen sind, und aus den Frequenzen können wir einen Wert für die träge Masse ableiten. Es stellt sich heraus, dass die Masse von Skyrmion fünfmal größer ist als von existierenden Theorien vorhergesagt. Die Masse wird folglich durch einen neuartigen Mechanismus bestimmt, der sich aus der räumlichen Beschränkung der Skyrmionen ergibt, welche sich direkt aus der Topologie bleitenrnlässt.